T-regulatory cells as part of strategy of immune evasion by pathogens
详细信息    查看全文
  • 作者:F. Yu. Garib ; A. P. Rizopulu
  • 关键词:Treg ; CD4+CD25highFoxp3+ ; antigen ; presenting cells ; IL ; 10 ; CTLA ; 4 ; immunosuppression ; immune evasion
  • 刊名:Biochemistry (Moscow)
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:80
  • 期:8
  • 页码:957-971
  • 全文大小:180 KB
  • 参考文献:1.Playfair, J. H. L., and Bancroft, G. J. (2012) Infection and Immunity, 4th Edn., Oxford University Press, Oxford, pp. 115-20.
    2.Tischler, A. D., and McKinney, J. D. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 425-40.
    3.Sansonetti, P. J., and Puhar, A. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 133-42.
    4.Garib, F. Yu. (2013) Interaction of Pathogens with Innate Immunity [in Russian], MSU, Moscow.
    5.Garib, F. Yu., and Rizopulu, A. P. (2012) Interaction of pathogenic bacteria with host innate immunity, Infekts. Immun., 62, 581-96.
    6.Gal-Mor, O., and Finlay, B. B. (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence, Cell Microbiol., 8, 1707-719.View Article PubMed
    7.Forsberg, A., Rosqvist, R., and Fallman, M. (2003) in Bacterial Evasion in Host Immune Responses (Henderson, B., and Oyston, P. C. E., eds.) Cambridge University Press, pp. 127-70.
    8.Pritchard, D., Hooi, D., Watson, E., Chow, S., Telford, G., Bycroft, B., Chhabra, C., Harty, C., Camara, M., Diggle, S., and Williams, P. (2003) in Bacterial Evasion in Host Immune Responses (Henderson, B., and Oyston, P. C. E., eds.) Cambridge University Press, pp. 201-22.
    9.Mesman, A. W., Zijlstra-Willems, E. M., Kaptein, T. M., de Swart, R. L., Davis, M. E., Ludlow, M., Duprex, W. P., Gack, M. U., Gringhuis, S. I., and Geijtenbeek, T. B. (2014) Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases, Cell Host Microbe, 16, 31-2.PubMed Central View Article PubMed
    10.Murphy, K. P. (2012) Janeway’s Immunobiology, Garland Science, Taylor and Francis group, LLC.
    11.Farrington, L., O’Neill, G., and Hill, A. B. (2011) in The Immune Response to Infection (Kaufmann, S. H. E., Rouse, B. T., and Sachs, D. L., eds.) ASM Press, Washington, DC, pp. 393-01.
    12.Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E., and Waldmann, H. (2013) The plasticity and stability of regulatory T-cells, Nat. Rev. Immunol., 13, 461-67.View Article PubMed
    13.Shevach, E. M. (2013) in Fundamental Immunology (Paul, W. E., ed.) Lippincott Williams and Wilkins, pp. 795-32.
    14.Buckner, J. H. (2010) Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T-cells in human autoimmune diseases, Nat. Rev. Immunol., 10, 849-59.PubMed Central View Article PubMed
    15.Wang, R., Wan, Q., Kozhaya, L., Fujii, H., and Unutmaz, D. (2008) Identification of a regulatory T-cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression, PLoS One, 3, e2705.View Article
    16.Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., Brown, S. A., Rehg, J. E., Jones, M. L., Ni, H. T., Artis, D., Turk, M. J., and Vignali, D. A. (2010) IL-35-mediated induction of a potent regulatory T-cell population, Nat. Immunol., 11, 1093-101.PubMed Central View Article PubMed
    17.Jankovic, D., Kullberg, M. C., Feng, C. G., Goldszmid, R. S., Collazo, C. M., Wilson, M., Wynn, T. A., Kamanaka, M., Flavell, R. A., and Sher, A. (2007) Conventional T-bet+Foxp3–Th1-cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection, J. Exp. Med., 204, 273-83.PubMed Central View Article PubMed
    18.Nakagawa, T., Tsuruoka, M., Ogura, H., Okuyama, Y., Arima, Y., Hirano, T., and Murakami, M. (2010) IL-6 positively regulates Foxp3+CD8+ T-cells in vivo, Int. Immunol., 22, 129-39.View Article PubMed
    19.Rubtsov, Y. P., Niec, R. E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist, C., and Rudensky, A. Y. (2010) Stability of the regulatory T-cell lineage in vivo, Science, 329, 1667-671.PubMed Central View Article PubMed
    20.Shevach, E. M. (2009) Mechanisms of Foxp3+ T-regulatory cell-mediated suppression, Immunity, 30, 636-45.View Article PubMed
    21.Gupta, N., Hegde, P., Lecerf, M., Nain, M., Kaur, M., Kalia, M., Vrati, S, Bayry, J., Lacroix-Desmazes, S., and Kaveri, S. V. (2014) Japanese encephalitis virus expands regulatory T-cells by increasing the expression of PD-L1 on dendritic cells, Eur. J. Immunol., 44, 1363-374.View Article PubMed
    22.Chaturvedi, V., Collison, L. W., Guy, C. S., Workman, C. J., and Vignali, D. A. (2011) Cutting edge: human regulatory T-cells require IL-35 to mediate suppression and infectious tolerance, J. Immunol., 186, 6661-666.PubMed Central View Article PubMed
    23.Vignali, D. A., Collison, L. W., and Workman, C. J. (2008) How regulatory T-cells work, Nature Rev. Immunol., 8, 523-32.View Article
    24.Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica, D. R., and Ley, T. J. (2007) Granzyme B and perforin are important for regulatory T-cell-mediated suppression of tumor clearance, Immu
  • 作者单位:F. Yu. Garib (1) (2)
    A. P. Rizopulu (3)

    1. Lomonosov Moscow State University, Biological Faculty, 119991, Moscow, Russia
    2. Russian Medical Academy of Postgraduate Education, Department of Immunology, 123995, Moscow, Russia
    3. Committee on Science and High Technologies, State Duma of the Federal Assembly of Russian Federation, 103265, Moscow, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Bioorganic Chemistry
    Microbiology
    Biomedicine
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3040
文摘
Under physiological conditions, regulatory processes can suppress the immune response after elimination of a pathogen and restore homeostasis through the destruction and suppression of obsolete effector cells of the immune system. The main players in this process are T-regulatory cells (Tregs) and immature dendritic cells, which suppress the immune response by their own products and/or by inducing synthesis of immunosuppressive interleukins IL-10, IL-35, and transforming growth factor (TGF-?) by other cells. This mechanism is also used by widespread “successful-pathogens that are capable of chronically persisting in the human body -herpes virus, hepatitis viruses, human immunodeficiency virus, Mycobacterium tuberculosis, Helicobacter pylori, and others. During coevolution of microbial pathogens and the host immune system, the pathogens developed sophisticated strategies for evading the host defense, so-called immune evasion. In particular, molecular structures of pathogens during the interaction with dendritic cells via activating and inhibitory receptors can change intracellular signal transduction, resulting in block of maturation of dendritic cells. Immature dendritic cells become tolerogenic and cause differentiation of Tregs from the conventional T-cell CD4+. Microbial molecules can also react directly with Tregs through innate immune receptors. Costimulation of Toll-like receptor 5 (TLR5) by flagellin increases the expression of the transcription factor Foxp3, which increases the suppressive activity of Treg cells. From all evasion mechanisms, the induction of immunosuppression by Treg through IL-10, IL-35, and TGF-? appears most effective. This results in the suppression of inflammation and of adaptive immune responses against pathogens, optimizing the conditions for the survival of bacteria and viruses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700