Immunological function of Blimp-1 in dendritic cells and relevance to autoimmune diseases
详细信息    查看全文
  • 作者:Sun Jung Kim
  • 关键词:Dendritic cells ; Blimp ; 1 ; Antigen presentation ; SLE
  • 刊名:Immunologic Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:63
  • 期:1-3
  • 页码:113-120
  • 全文大小:638 KB
  • 参考文献:1.Keller AD, Maniatis T. Identification and characterization of a novel repressor of beta-interferon gene expression. Genes Dev. 1991;5(5):868鈥?9.CrossRef PubMed
    2.Turner CA Jr, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77(2):297鈥?06.CrossRef PubMed
    3.Huang S. Blimp-1 is the murine homolog of the human transcriptional repressor PRDI-BF1. Cell. 1994;78(1):9.CrossRef PubMed
    4.Keller AD, Maniatis T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol Cell Biol. 1992;12(5):1940鈥?.PubMedCentral CrossRef PubMed
    5.Kuo TC, Calame KL. B lymphocyte-induced maturation protein (Blimp)-1, IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites. J Immunol. 2004;173(9):5556鈥?3.CrossRef PubMed
    6.Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227. doi:10.鈥?186/鈥媑b-2005-6-8-227 .PubMedCentral CrossRef PubMed
    7.Gyory I, Wu J, Fejer G, Seto E, Wright KL. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol. 2004;5(3):299鈥?08. doi:10.鈥?038/鈥媙i1046 .CrossRef PubMed
    8.Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol. 2006;8(6):623鈥?0. doi:10.鈥?038/鈥媙cb1413 .CrossRef PubMed
    9.Shin HM, Kapoor VN, Guan T, Kaech SM, Welsh RM, Berg LJ. Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell memory progression during acute virus infection. Immunity. 2013;39(4):661鈥?5. doi:10.鈥?016/鈥媕.鈥媔mmuni.鈥?013.鈥?8.鈥?32 .CrossRef PubMed
    10.Savitsky D, Calame K. B-1 B lymphocytes require Blimp-1 for immunoglobulin secretion. J Exp Med. 2006;203(10):2305鈥?4. doi:10.鈥?084/鈥媕em.鈥?0060411 .PubMedCentral CrossRef PubMed
    11.Schliephake DE, Schimpl A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-mu F(ab鈥?2-co-stimulated B lymphocytes. Eur J Immunol. 1996;26(1):268鈥?1. doi:10.鈥?002/鈥媏ji.鈥?830260142 .CrossRef PubMed
    12.Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol. 2007;178(12):7779鈥?6.CrossRef PubMed
    13.Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C, et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 2008;180(2):800鈥?.CrossRef PubMed
    14.Ghamlouch H, Ouled-Haddou H, Guyart A, Regnier A, Trudel S, Claisse JF, et al. TLR9 ligand (CpG oligodeoxynucleotide) induces CLL B-cells to differentiate into CD20(+) antibody-secreting cells. Front Immunol. 2014;5:292. doi:10.鈥?389/鈥媐immu.鈥?014.鈥?0292 .PubMedCentral CrossRef PubMed
    15.Li FJ, Schreeder DM, Li R, Wu J, Davis RS. FCRL3 promotes TLR9-induced B-cell activation and suppresses plasma cell differentiation. Eur J Immunol. 2013;43(11):2980鈥?2. doi:10.鈥?002/鈥媏ji.鈥?01243068 .CrossRef PubMed
    16.Gong D, Malek TR. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J Immunol. 2007;178(1):242鈥?2.CrossRef PubMed
    17.Chen-Kiang S. Regulation of terminal differentiation of human B-cells by IL-6. Curr Top Microbiol Immunol. 1995;194:189鈥?8.PubMed
    18.Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173(9):5361鈥?1.CrossRef PubMed
    19.Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA. 1992;89(5):1890鈥?.PubMedCentral CrossRef PubMed
    20.Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol. 2002;169(4):1922鈥?.CrossRef PubMed
    21.Ohkubo Y, Arima M, Arguni E, Okada S, Yamashita K, Asari S, et al. A role for c-fos/activator protein 1 in B lymphocyte terminal differentiation. J Immunol. 2005;174(12):7703鈥?0.CrossRef PubMed
    22.Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540鈥?.CrossRef PubMed
    23.Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25(2):225鈥?6. doi:10.鈥?016/鈥媕.鈥媔mmuni.鈥?006.鈥?7.鈥?09 .CrossRef PubMed
    24.Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6(12):683鈥?2. doi:10.鈥?038/鈥媙rrheum.鈥?010.鈥?76 .PubMedCentral CrossRef PubMed
    25.Barcellos LF, May SL, Ramsay PP, Quach HL, Lane JA, Nititham J, et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet. 2009;5(10):e1000696. doi:10.鈥?371/鈥媕ournal.鈥媝gen.鈥?000696 .PubMedCentral CrossRef PubMed
    26.Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, Fernando MM, Green T, et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA. 2009;106(44):18680鈥?. doi:10.鈥?073/鈥媝nas.鈥?909307106 .PubMedCentral CrossRef PubMed
    27.Kawasaki A, Furukawa H, Kondo Y, Ito S, Hayashi T, Kusaoi M, et al. TLR7 single-nucleotide polymorphisms in the 3鈥?untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res Ther. 2011;13(2):R41. doi:10.鈥?186/鈥媋r3277 .PubMedCentral CrossRef PubMed
    28.Niewold TB, Kelly JA, Flesch MH, Espinoza LR, Harley JB, Crow MK. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58(8):2481鈥?. doi:10.鈥?002/鈥媋rt.鈥?3613 .PubMedCentral CrossRef PubMed
    29.Abelson AK, Delgado-Vega AM, Kozyrev SV, Sanchez E, Velazquez-Cruz R, Eriksson N, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68(11):1746鈥?3. doi:10.鈥?136/鈥媋rd.鈥?008.鈥?97642 .CrossRef PubMed
    30.Jacob CO, Zhu J, Armstrong DL, Yan M, Han J, Zhou XJ, et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci USA. 2009;106(15):6256鈥?1. doi:10.鈥?073/鈥媝nas.鈥?901181106 .PubMedCentral CrossRef PubMed
    31.Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253鈥?. doi:10.鈥?038/鈥媙g.鈥?66 .PubMedCentral CrossRef PubMed
    32.Wu H, Cantor RM, Graham DS, Lingren CM, Farwell L, Jager PL, et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum. 2005;52(8):2396鈥?02. doi:10.鈥?002/鈥媋rt.鈥?1223 .CrossRef PubMed
    33.Liu JL, Zhang FY, Liang YH, Xiao FL, Zhang SQ, Cheng YL, et al. Association between the PD1.3A/G polymorphism of the PDCD1 gene and systemic lupus erythematosus in European populations: a meta-analysis. J Eur Acad Dermatol Venereol. 2009;23(4):425鈥?2. doi:10.鈥?111/鈥媕.鈥?468-3083.鈥?009.鈥?3087.鈥媥 .CrossRef PubMed
    34.Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR, et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009;10(5):397鈥?03. doi:10.鈥?038/鈥媑ene.鈥?009.鈥?9 .PubMedCentral CrossRef PubMed
    35.Simpfendorfer KR, Olsson LM, Manjarrez Orduno N, Khalili H, Simeone AM, Katz MS, et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum Mol Genet. 2012;21(17):3918鈥?5. doi:10.鈥?093/鈥媓mg/鈥媎ds220 .PubMedCentral CrossRef PubMed
    36.Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900鈥?. doi:10.鈥?056/鈥婲EJMoa0707865 .CrossRef PubMed
    37.Radanova M, Vasilev V, Dimitrov T, Deliyska B, Ikonomov V, Ivanova D. Association of rs172378 C1q gene cluster polymorphism with lupus nephritis in Bulgarian patients. Lupus. 2015;24(3):280鈥?. doi:10.鈥?177/鈥?961203314555173鈥?/span> .CrossRef PubMed
    38.Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 2002;46(6):1563鈥?1. doi:10.鈥?002/鈥媋rt.鈥?0306 .CrossRef PubMed
    39.Jonsen A, Gunnarsson I, Gullstrand B, Svenungsson E, Bengtsson AA, Nived O, et al. Association between SLE nephritis and polymorphic variants of the CRP and FcgammaRIIIa genes. Rheumatology (Oxford). 2007;46(9):1417鈥?1. doi:10.鈥?093/鈥媟heumatology/鈥媖em167 .CrossRef
    40.Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, et al. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum. 2003;48(11):3242鈥?2. doi:10.鈥?002/鈥媋rt.鈥?1313 .CrossRef PubMed
    41.Chen JY, Wang CM, Ma CC, Luo SF, Edberg JC, Kimberly RP, et al. Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum. 2006;54(12):3908鈥?7. doi:10.鈥?002/鈥媋rt.鈥?2220 .CrossRef PubMed
    42.Fan Y, Li LH, Pan HF, Tao JH, Sun ZQ, Ye DQ. Association of ITGAM polymorphism with systemic lupus erythematosus: a meta-analysis. J Eur Acad Dermatol Venereol. 2011;25(3):271鈥?. doi:10.鈥?111/鈥媕.鈥?468-3083.鈥?010.鈥?3776.鈥媥 .CrossRef PubMed
    43.Toller-Kawahisa JE, Vigato-Ferreira IC, Pancoto JA, Mendes-Junior CT, Martinez EZ, Palomino GM, et al. The variant of CD11b, rs1143679 within ITGAM, is associated with systemic lupus erythematosus and clinical manifestations in Brazilian patients. Hum Immunol. 2014;75(2):119鈥?3. doi:10.鈥?016/鈥媕.鈥媓umimm.鈥?013.鈥?1.鈥?13 .CrossRef PubMed
    44.Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228鈥?3. doi:10.鈥?038/鈥媙g.鈥?68 .PubMedCentral CrossRef PubMed
    45.Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234鈥?. doi:10.鈥?038/鈥媙g.鈥?72 .CrossRef PubMed
    46.Zhou XJ, Lu XL, Lv JC, Yang HZ, Qin LX, Zhao MH, et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis. 2011;70(7):1330鈥?. doi:10.鈥?136/鈥媋rd.鈥?010.鈥?40111 .CrossRef PubMed
    47.Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn鈥檚 disease susceptibility loci. Nat Genet. 2010;42(12):1118鈥?5. doi:10.鈥?038/鈥媙g.鈥?17 .PubMedCentral CrossRef PubMed
    48.Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2008;26:133鈥?9. doi:10.鈥?146/鈥媋nnurev.鈥媔mmunol.鈥?6.鈥?21607.鈥?90241 .CrossRef PubMed
    49.Chang DH, Angelin-Duclos C, Calame K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol. 2000;1(2):169鈥?6. doi:10.鈥?038/鈥?7861 .CrossRef PubMed
    50.Iwakoshi NN, Pypaert M, Glimcher LH. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med. 2007;204(10):2267鈥?5. doi:10.鈥?084/鈥媕em.鈥?0070525 .PubMedCentral CrossRef PubMed
    51.Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81鈥?3. doi:10.鈥?016/鈥媕.鈥媔mmuni.鈥?004.鈥?6.鈥?10 .CrossRef PubMed
    52.Kim SJ, Zou YR, Goldstein J, Reizis B, Diamond B. Tolerogenic function of Blimp-1 in dendritic cells. J Exp Med. 2011;208(11):2193鈥?. doi:10.鈥?084/鈥媕em.鈥?0110658 .PubMedCentral CrossRef PubMed
    53.Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138鈥?9. doi:10.鈥?016/鈥媕.鈥媔mmuni.鈥?008.鈥?5.鈥?09 .PubMedCentral CrossRef PubMed
    54.Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A, Weinstein JS, et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol. 2010;185(1):313鈥?6. doi:10.鈥?049/鈥媕immunol.鈥?904023 .PubMedCentral CrossRef PubMed
    55.Choi YS, Eto D, Yang JA, Lao C, Crotty S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J Immunol. 2013;190(7):3049鈥?3. doi:10.鈥?049/鈥媕immunol.鈥?203032 .PubMedCentral CrossRef PubMed
    56.Kim SJ, Gregersen PK, Diamond B. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J Clin Invest. 2013;123(2):823鈥?3. doi:10.鈥?172/鈥婮CI64712 .PubMedCentral PubMed
    57.Salehi S, Bankoti R, Benevides L, Willen J, Couse M, Silva JS, et al. B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J Immunol. 2012;189(12):5682鈥?3. doi:10.鈥?049/鈥媕immunol.鈥?201966 .PubMedCentral CrossRef PubMed
    58.Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119鈥?4. doi:10.鈥?038/鈥媙ature11582 .PubMedCentral CrossRef PubMed
    59.Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol. 2014;15(1):98鈥?08. doi:10.鈥?038/鈥媙i.鈥?768 .PubMedCentral CrossRef PubMed
    60.Kim SJ, Goldstein J, Dorso K, Merad M, Mayer L, Crawford JM, et al. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. Mol Med. 2014;20:707鈥?9. doi:10.鈥?119/鈥媘olmed.鈥?014.鈥?0231 .PubMedCentral CrossRef
    61.Bianchi V, Maconi G, Ardizzone S, Colombo E, Ferrara E, Russo A, et al. Association of NOD2/CARD15 mutations on Crohn鈥檚 disease phenotype in an Italian population. Eur J Gastroenterol Hepatol. 2007;19(3):217鈥?3. doi:10.鈥?097/鈥?1.鈥媘eg.鈥?000250590.鈥?4102.鈥?2 .CrossRef PubMed
    62.Piskurich JF, Lin KI, Lin Y, Wang Y, Ting JP, Calame K. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nat Immunol. 2000;1(6):526鈥?2. doi:10.鈥?038/鈥?2788 .CrossRef PubMed
    63.Smith MA, Wright G, Wu J, Tailor P, Ozato K, Chen X, et al. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J Biol Chem. 2011;286(10):7893鈥?04. doi:10.鈥?074/鈥媕bc.鈥婱110.鈥?65431 .PubMedCentral CrossRef PubMed
    64.VanderLugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M, et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol. 2014;15(2):161鈥?. doi:10.鈥?038/鈥媙i.鈥?795 .CrossRef
    65.Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol. 2011;12(4):304鈥?1. doi:10.鈥?038/鈥媙i.鈥?006 .CrossRef PubMed
    66.Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435(7041):452鈥?. doi:10.鈥?038/鈥媙ature03555 .CrossRef PubMed
    67.Arce E, Jackson DG, Gill MA, Bennett LB, Banchereau J, Pascual V. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J Immunol. 2001;167(4):2361鈥?.CrossRef PubMed
    68.Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med. 1999;190(8):1123鈥?4.PubMedCentral CrossRef PubMed
    69.Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y, Kurosaki T, et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity. 2011;34(6):961鈥?2. doi:10.鈥?016/鈥媕.鈥媔mmuni.鈥?011.鈥?3.鈥?25 .CrossRef PubMed
    70.Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007;179(8):5099鈥?08.CrossRef PubMed
    71.Schmitt N, Liu Y, Bentebibel SE, Munagala I, Bourdery L, Venuprasad K, et al. The cytokine TGF-beta co-opts signaling via STAT3鈥揝TAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15(9):856鈥?5. doi:10.鈥?038/鈥媙i.鈥?947 .PubMedCentral CrossRef PubMed
    72.Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem. 1992;267(11):7258鈥?2.PubMed
    73.Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996;4(4):357鈥?6.CrossRef PubMed
    74.Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol. 2002;168(6):2618鈥?5.CrossRef PubMed
    75.Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol. 2009;10(4):375鈥?4. doi:10.鈥?038/鈥媙i.鈥?704 .PubMedCentral CrossRef PubMed
    76.Yang H, Kala M, Scott BG, Goluszko E, Chapman HA, Christadoss P. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J Immunol. 2005;174(3):1729鈥?7.CrossRef PubMed
    77.Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity. 1999;10(2):207鈥?7.CrossRef PubMed
    78.Saegusa K, Ishimaru N, Yanagi K, Arakaki R, Ogawa K, Saito I, et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest. 2002;110(3):361鈥?. doi:10.鈥?172/鈥婮CI14682 .PubMedCentral CrossRef PubMed
    79.Rupanagudi KV, Kulkarni OP, Lichtnekert J, Darisipudi MN, Mulay SR, Schott B, et al. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann Rheum Dis. 2015;74(2):452鈥?3. doi:10.鈥?136/鈥媋nnrheumdis-2013-203717 .CrossRef PubMed
  • 作者单位:Sun Jung Kim (1) (2)

    1. Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
    2. Department of Molecular Medicine, Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
  • 刊物主题:Allergology; Immunology; Medicine/Public Health, general; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-0755
文摘
Previous studies have identified the immunological functions of transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) in various adaptive immune cell types such as T and B lymphocytes. More recently, it has been shown that Blimp-1 extends its functional roles to dendritic cells (DCs) and macrophages, two cell types belonging to the innate immune system. The protein acts as a direct and indirect regulator of target genes by recruiting chromatin modification factors and by regulating microRNA expression, respectively. In DCs, Blimp-1 has been identified as one of the components involved in antigen presentation. Genome-wide association studies identified polymorphisms associated with multiple autoimmune diseases such as system lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease in PRDM1, the gene encoding Blimp-1 protein. In this review, we will discuss the immune regulatory functions of Blimp-1 in DCs with a main focus on the tolerogenic mechanisms of Blimp-1 required to protect against the development of autoimmune diseases. Keywords Dendritic cells Blimp-1 Antigen presentation SLE

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700