Fatigue Response of Solvent-Based Self-Healing Smart Materials
详细信息    查看全文
  • 作者:S. Neuser (1)
    V. Michaud (1)
  • 关键词:Self ; healing polymer ; Smart composite ; SMA ; Fatigue testing
  • 刊名:Experimental Mechanics
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:54
  • 期:2
  • 页码:293-304
  • 全文大小:1,443 KB
  • 参考文献:1. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794鈥?97 CrossRef
    2. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698鈥?702 CrossRef
    3. Hayes SA, Jones FR, Marshiya K, Zhang W (2007) A self-healing thermosetting composite material. Compos A Appl Sci Manuf 38(4):1116鈥?120 CrossRef
    4. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41鈥?2 CrossRef
    5. Berl V, Schmutz M, Krische MJ, Khoury RG, Lehn JM (2002) Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays - formation, characterization, and properties. Chem Eur J 8(5):1227鈥?244 CrossRef
    6. Kalista SJ, Ward TC, Oyetunji Z (2007) Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14(5):391鈥?97 CrossRef
    7. Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802鈥?807 CrossRef
    8. Caruso MM, Delafuente DA, Ho V, Sottos NR, Moore JS, White SR (2007) Solvent-promoted self-healing epoxy materials. Macromolecules 40(25):8830鈥?832 CrossRef
    9. Yan CY, Min ZR, Ming QZ, Chen J, Gui CY, Xue ML (2008) Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14):5197鈥?202 CrossRef
    10. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38(6):1525鈥?532 CrossRef
    11. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581鈥?85 CrossRef
    12. Williams HR, Trask RS, Weaver PM, Bond IP (2008) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5(18):55鈥?5 CrossRef
    13. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40(1):179鈥?11 CrossRef
    14. Kirkby E, de Oliveira R, Michaud V, M氓nson JA (2011) Impact localisation with fbg for a self-healing carbon fibre composite structure. Compos Struct 94(1):8鈥?4 CrossRef
    15. Kessler SS, Spearing SM, Soutis C (2002) Damage detection in composite materials using lamb wave methods. Smart Mater Struct 11(2):269鈥?78 CrossRef
    16. Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, M氓nson JAE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18(15):2253鈥?260 CrossRef
    17. Park JS, Takahashi K, Guo Z, Wang Y, Bolanos E, Hamann-Schaffner C, Murphy E, Wudl F, Hahn HT (2008) Towards development of a self-healing composite using a mendable polymer and resistive heating. J Compos Mater 42(26):2869鈥?881 CrossRef
    18. van der Zwaag S, Schmets AJM (2007) Self healing materials : an alternative approach to 20 centuries of materials science. Springer, Dordrecht CrossRef
    19. Kirkby EL, Michaud VJ, M氓nson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50(23):5533鈥?538 CrossRef
    20. Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polymer 53(2):370鈥?78 CrossRef
    21. Yuan YC, Rong MZ, Zhang MQ, Yang GC (2009) Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer 50(24):5771鈥?781 CrossRef
    22. Toohey KS, Hansen CJ, Lewis JA, White SR, Sottos NR (2009) Delivery of two-part self-healing chemistry via microvascular networks. Adv Funct Mater 19(9):1399鈥?405 CrossRef
    23. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater 18(13):1898鈥?904 CrossRef
    24. Weisenberger LA, Koenig JL (1990) Nmr imaging of diffusion processes in polymers: measurement of the spatial dependence of solvent mobility in partially swollen pmma rods. Macromolecules 23(9):2445鈥?453 CrossRef
    25. Dutheillet Y, Mantle M, Vesely D, Gladden L (1999) Diffusion of water-acetic acid mixtures in epoxy. J Polym Sci B Polym Phys 37(23):3328鈥?336 CrossRef
    26. Hamilton AR, Sottos NR, White SR (2012) Mitigation of fatigue damage in self-healing vascular materials. Polymer 53(24):5575鈥?581 CrossRef
    27. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - part i: manual infiltration. Compos Sci Technol 65(15鈥?6):2466鈥?473 CrossRef
    28. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite鈥損art II: / in situ self-healing. Compos Sci Technol 65(15鈥?6):2474鈥?480 CrossRef
    29. Brown EN, White SR, Sottos NR (2006) Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci 41(19):6266鈥?273 CrossRef
    30. Shin CS, Huang KC, Li RZ (1998) Artificial retardation of fatigue crack growth by the infiltration of cracks by foreign materials. Fatigue Fract Mater Struct 21(7):835鈥?46 CrossRef
    31. Caruso MM (2010) Solvent-based self-healing polymeric materials. PhD thesis, University of Illinois
    32. Neuser S, Michaud V (2013) Effect of aging on the performance of solvent-based self-healing materials. Polym Chem. doi:10.1039/C3PY00064H
    33. Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR (2009) Microcapsules filled with reactive solutions for self-healing materials. Polymer 50(4):990鈥?97 CrossRef
    34. Jones AS, Rule JD, Moore JS, White SR, Sottos NR (2006) Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater 18(5):1312鈥?317 CrossRef
    35. Rule JD, Brown EN, Sottos NR, White SR, Moore JS (2005) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17(2):205鈥?08 CrossRef
    36. Beres W, Koul AK, Thamburaj R (1997) A tapered double-cantilever-beam specimen designed for constant-k testing at elevated temperatures. J Test Eval 25(6):536鈥?42 CrossRef
    37. Brown EN (2011) Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. Journal Strain Anal Eng Des 46(3):167鈥?86 CrossRef
    38. Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42(4):372鈥?79 CrossRef
    39. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85(4):528鈥?34 CrossRef
    40. Moy P, Karasz FE (1980) Epoxy-water interactions. Polym Eng Sci 20(4):315鈥?19 CrossRef
    41. Jones AS, Rule JD, Moore JS, Sottos NR, White SR (2007) Life extension of self-healing polymers with rapidly growing fatigue cracks. J R Soc Interface 4(13):395鈥?03 CrossRef
    42. ANSYS Inc http://www.ansys.com/. Accessed 7 Apr 2012
  • 作者单位:S. Neuser (1)
    V. Michaud (1)

    1. Laboratory of Polymer and Composite Technology (LTC), Ecole Polytechnique F茅d茅rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
  • ISSN:1741-2765
文摘
We investigated the healing of epoxy resins with embedded ethyl phenylacetate (EPA) solvent loaded capsules and shape memory alloy (SMA) wires under fatigue loading in tapered double cantilever beam (TDCB) mode. Under cyclic loading, the kinetics of solvent diffusion are in competition with the rate of damage propagation. We showed that the active mechanism of self-healing under continuous loading is different from that in quasi-static testing. Crack arrest was observed after some initial crack growth, resulting from the diffusion of EPA solvent into the crack tip, involving local plasticization of the epoxy. Finite element analysis confirmed that the lower modulus and higher elongation at break of the solvated epoxy reduced the stresses at the crack tip. This effect combined with the well-studied microcapsule toughening effect, tremendously increased the toughness of plain epoxy. For epoxy with embedded SMA wires, completely fractured samples, healed using SMA activation, showed similar fatigue resistance as virgin samples. Furthermore, SMA activation during a 10 min break also stabilized crack progression, compared to at least 2 h needed to reach the same effect without SMA wires.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700