Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery
详细信息    查看全文
  • 作者:Yong-Hun Park ; Sang Keun Ha ; Inwook Choi…
  • 关键词:microneedle ; carboxymethyl cellulose (CMC) ; laser fabrication ; transdermal delivery
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:110-118
  • 全文大小:672 KB
  • 参考文献:1.Kermode, M. (2004) Unsafe injections in low-income country health settings: Need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot. Int. 19: 95–103.CrossRef
    2.Prausnitz, M. R. (2004) Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56: 581–587.CrossRef
    3.Prausnitz, M. R., S. Mitragotri, and R. Langer (2004) Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3: 115–124.CrossRef
    4.Kalia, Y. N., A. Naik, J. Garrison, and R. H. Guy (2004) Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56: 619–658.CrossRef
    5.Denet, A. R., R. Vanbever, and V. Preat (2004) Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56: 659–674.CrossRef
    6.Kim, Y. C., J. H. Park, and M. R. Prausnitz (2012) Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64: 1547–1568.CrossRef
    7.Stoeber, B. and D. Liepmann (2000) Fluid injection through outof-plane microneedles. 1 st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. October 12–14. Lyon, FRANCE.
    8.Smart, W. H. and K. Subramanian (2000) The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol. Ther. 2: 549–59.CrossRef
    9.Chen, J., K. D. Wise, J. F. Hetke, and S. C. Bledsoe (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44: 760–769.CrossRef
    10.Lin, W., M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. L. Teng, G. E. Hardee, and P. E. Daddona (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm. Res. 18: 1789–1793.CrossRef
    11.Martanto, W., S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill, and M. R. Prausnitz (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21: 947–952.CrossRef
    12.Matriano, J. A., M. Cormier, J. Johnson, W. A. Young, M. Buttery, K. Nyam, and P. E. Daddona (2002) Macroflux microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharm. Res. 19: 63–70.CrossRef
    13.Park, J. H., M. G. Allen, and M. R. Prausnitz (2006) Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23: 1008–1019.CrossRef
    14.Kochhar, J. S., W. X. Lim, S. Zou, W. Y. Foo, J. Pan, and L. Kang (2013) Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 10: 4272–4280.CrossRef
    15.Wang, P. C., B. A. Wester, S. Rajaraman, S. J. Paik, S. H. Kim, and M. G. Allen (2009) Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009: 7026–7029.
    16.Kommareddy, S., B. C. Baudner, S. Oh, S. Y. Kwon, M. Singh, and D. T. O’Hagan (2012) Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J. Pharm. Sci. 101: 1021–1027.CrossRef
    17.Bediz, B., E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos, L. D. Falo, and O. B. Ozdoganlar (2014) Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm. Res. 31: 117–135.CrossRef
    18.Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March (2011) Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 11: 389–392.CrossRef
    19.Costello, C. M., J. Hongpeng, S. Shaffiey, J. Yu, N. K. Jain, D. Hackam, and J. C. March (2014) Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 111: 1222–1232.CrossRef
    20.Yu, J., S. Peng, D. Luo, and J. C. March (2012) In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109: 2173–2178.CrossRef
    21.Park, Y., J. Park, G. Chu, K. Kim, J. Sung, and B. Kim (2015) Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol. Bioproc. Eng. 20: 543–549.CrossRef
    22.Lee, J. W., J. H. Park, and M. R. Prausnitz (2008) Dissolving microneedles for transdermal drug delivery. Biomat. 29: 2113–2124.CrossRef
    23.Park, J. H., M. G. Allen, and M. R. Prausnitz (2005) Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Rel. 104: 51–66.CrossRef
    24.Kim, M., H. Yang, H. Kim, H. Jung, and H. Jung (2014) Novel cosmetic patches for wrinkle improvement: Retinyl retinoateand ascorbic acid-loaded dissolving microneedles. Int. J. Cosmet. Sci. 36: 207–212.CrossRef
    25.Li, C.G., C.Y. Lee, K. Lee, and H. Jung (2013) An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdev. 15: 17–25.CrossRef
    26.Crookes, B. A., S. M. Cohn, H. Bonet, E. A. Burton, J. Nelson, M. Majetschak, A. J. Varon, J. M. Linden, and K. G. Proctor (2004) Building a better fluid for emergency resuscitation of traumatic brain injury. J. Trauma. 57: 547–554.CrossRef
    27.Feng, X. H. P. R., and M. Leduc (2006) Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Indust. Eng. Chem. Res. 45: 6665–6671.CrossRef
    28.Kalichevsky, M. T., E. M. Jaroszkiewicz, S. Ablett, J. M. V. Blanshard, and P. J. Lillford (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohyd. Poly. 18: 77–88.CrossRef
    29.Davis, S. P., B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz (2004) Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 37: 1155–1163.CrossRef
    30.Casalini, T., F. Rossi, S. Lazzari, G. Perale, and M. Masi (2014) Mathematical modeling of PLGA MICROparticles: From polymer degradation to drug release. Mol. Pharm. 11: 4036–4048.CrossRef
    31.Kim, H. M., Y. Y. Lim, J. H. An, M. N. Kim, and B. J. Kim (2012) Transdermal drug delivery using disk microneedle rollers in a hairless rat model. Int. J. Dermatol. 51: 859–863.CrossRef
    32.Gomaa, Y. A., L. K. El-Khordagui, M. J. Garland, R. F. Donnelly, F. McInnes, and V. M. Meidan (2012) Effect of microneedle treatment on the skin permeation of a nanoencapsulated dye. J. Pharm. Pharmacol. 64: 1592–1602.CrossRef
    33.Panich, U., V. Tangsupa-a-nan, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp (2011) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch. Pharm. Res. 34: 811–20.CrossRef
    34.Gallarate, M., M. E. Carlotti, M. Trotta, and S. Bovo (1999) On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int. J. Pharm. 188: 233–241.CrossRef
    35.Burke, K. E. (2007) Interaction of vitamins C and E as better cosmeceuticals. Dermatol. Ther. 20: 314–321.CrossRef
    36.Ito, Y., T. Maeda, K. Fukushima, N. Sugioka, and K. Takada (2010) Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chem. Pharm. Bull. 58: 458–463.CrossRef
  • 作者单位:Yong-Hun Park (1)
    Sang Keun Ha (2)
    Inwook Choi (2)
    Kyu Sik Kim (3)
    Jeryang Park (4)
    Nakwon Choi (5)
    Bumsang Kim (1)
    Jong Hwan Sung (1)

    1. Department of Chemical Engineering, Hongik University, Seoul, 121-791, Korea
    2. Korea Food Research Institute, Seongnam, Korea
    3. Mizon, Osan, 447-210, Korea
    4. School of Urban and Civil Engineering, Hongik University, Seoul, 121-791, Korea
    5. Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Transdermal drug delivery system (TDDS) may provide a more reliable method of drug delivery than oral delivery by avoiding gut absorption and first-pass metabolism, but needs a method for efficiently crossing the epidermal barrier. To enhance the delivery through the skin, we have developed a biocompatible, dissolvable microneedle array made from carboxymethyl cellulose (CMC). Using laser ablation for creating the mold greatly improved the efficiency and reduced the cost of microneedle fabrication. Mixing CMC with amylopectin (AP) enhanced the mechanical and tunable dissolution properties of the microneedle for controlled release of model compounds. Using the CMC microneedle array, we observed significant enhancement in the skin permeability of a fluorescent model compound, and also increase in the anti-oxidant activity of ascorbic acid after crossing the skin. Our dissolvable microneedle array provides a new and biocompatible method for delivery of drugs and cosmetic compounds through the skin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700