Experimental and CFD–PBM approach coupled with a simplified dynamic analysis of mass transfer in phenol biodegradation in a three phase system of an aerated two-phase partitioning bioreactor for environmental applications
详细信息    查看全文
  • 作者:Hamed Moradkhani ; Navideh Anarjan Kouchehbagh…
  • 刊名:Heat and Mass Transfer
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:53
  • 期:3
  • 页码:1073-1091
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1181
  • 卷排序:53
文摘
A three-dimensional transient modeling of a two-phase partitioning bioreactor, combining system hydrodynamics, two simultaneous mass transfer and microorganism growth is modeled using computational fluid dynamics code FLUENT 6.2. The simulation is based on standard “k–ε” Reynolds-averaged Navier–Stokes model. Population balance model is implemented in order to describe gas bubble coalescence, breakage and species transport in the reaction medium and to predict oxygen volumetric mass transfer coefficient (kLa). Model results are verified against experimental data and show good agreement as 13 classes of bubble size is taking into account. Flow behavior in different operational conditions is studied. Almost at all impeller speeds and aeration intensities there were acceptable distributions of species caused by proper mixing. The magnitude of dissolved oxygen percentage in aqueous phase has a direct correlation with impeller speed and any increasing of the aeration magnitude leads to faster saturation in shorter periods of time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700