The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management
详细信息    查看全文
  • 作者:Karsten K. Madsen (1)
    Gert H. Hansen (2)
    E. Michael Danielsen (2)
    Arne Schousboe (1)

    1. Department of Drug Design and Pharmacology
    ; Faculty of Health and Medical Sciences ; University of Copenhagen ; Universitetsparken 2 ; 2100 ; Copenhagen 脴 ; Denmark
    2. Department of Cellular and Molecular Medicine
    ; Faculty of Health and Medical Sciences ; University of Copenhagen ; Copenhagen 脴 ; Denmark
  • 关键词:GABA transporters ; Epilepsy ; FRET ; Dimerization ; Localization ; Raft
  • 刊名:Neurochemical Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:40
  • 期:2
  • 页码:410-419
  • 全文大小:380 KB
  • 参考文献:1. Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABA(A) receptor agonist gaboxadol. J Pharmacol Exp Ther 338:214鈥?19 CrossRef
    2. White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Fr酶lund B, Falch E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312:866鈥?74 CrossRef
    3. Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJ, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257鈥?66 CrossRef
    4. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102
    5. Bender AS, Norenberg MD (2000) Effect of ammonia on GABA uptake and release in cultured astrocytes. Neurochem Int 36:389鈥?95 CrossRef
    6. Schousboe A, Waagepetersen HS, Leke R, Bak LK (2014) Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metab Brain Dis 29:913鈥?17
    7. Schousboe A, Madsen KK, Barker-Haliski ML, White HS (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 39:1980鈥?987
    8. Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51鈥?3 CrossRef
    9. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335鈥?56 CrossRef
    10. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255鈥?264
    11. Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409:482鈥?94 CrossRef
    12. Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 268:2106鈥?112
    13. Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL (1995) Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64:977鈥?84 CrossRef
    14. Zhu XM, Ong WY (2004) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33:233鈥?40 CrossRef
    15. Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC (2012) The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 302:F316鈥揊328 CrossRef
    16. Pietrini G, Suh YJ, Edelmann L, Rudnick G, Caplan MJ (1994) The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. J Biol Chem 269:4668鈥?674
    17. Ahn J, Mundigl O, Muth TR, Rudnick G, Caplan MJ (1996) Polarized expression of GABA transporters in Madin鈥揇arby canine kidney cells and cultured hippocampal neurons. J Biol Chem 271:6917鈥?924 CrossRef
    18. Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(Suppl 1):139鈥?44 CrossRef
    19. Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss Inc, New York, pp 183鈥?86
    20. Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss Inc, New York, pp 105鈥?08
    21. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell Cultures. In: Lajtha A (ed) Handbook of Neurochemistry. Plenum Publishing Corporation, New York, pp 603鈥?53
    22. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Fr酶lund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302:636鈥?44 CrossRef
    23. Dalskov SM, Immerdal L, Niels-Christiansen LL, Hansen GH, Schousboe A, Danielsen EM (2005) Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int 46:489鈥?99 CrossRef
    24. Bedoukian MA, Weeks AM, Partin KM (2006) Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J Biol Chem 281:23908鈥?3921 CrossRef
    25. Larsson OM, Griffiths R, Allen IC, Schousboe A (1986) Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types. J Neurochem 47:426鈥?32 CrossRef
    26. Chen Y, Periasamy A (2006) Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. J Fluoresc 16:95鈥?04 CrossRef
    27. Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367鈥?74 CrossRef
    28. Scholze P, Freissmuth M, Sitte HH (2002) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277:43682鈥?3690 CrossRef
    29. Hill WG, An B, Johnson JP (2002) Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277:33541鈥?3544 CrossRef
    30. Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(Suppl 1):135鈥?42 CrossRef
    31. M眉ller HK, Wiborg O, Haase J (2006) Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem 281:28901鈥?8909 CrossRef
    32. Storustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther 316:1351鈥?359 CrossRef
    33. Wafford KA, Ebert B (2006) Gaboxadol鈥攁 new awakening in sleep. Curr Opin Pharmacol 6:30鈥?6 CrossRef
    34. Cremers T, Ebert B (2007) Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration. Eur J Pharmacol 562:47鈥?2 CrossRef
    35. Vogensen SB, Jorgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, Schousboe A, White HS, Krogsgaard-Larsen P, Clausen RP (2013) Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem 56:2160鈥?164 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
The ability to modulate the synaptic GABA levels has been demonstrated by using the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid]. N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) which not only inhibits GAT1 like tiagabine but also BGT1 has been shown to modulate extrasynaptic GABA levels. The simultaneous inhibition of synaptic and extrasynaptic GABA transporters using tiagabine and EF1502, respectively has been demonstrated to exert a synergistic anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact explanation has not yet been found. In the present study, the ability of GATs to form homo and/or heterodimers was investigated as well as to which membrane micro environment the GATs reside. To investigate dimerization of GATs, fusion proteins of GATs tagged with either yellow fluorescent protein or cerulean fluorescent protein were made and fluorescence resonance energy transfer (FRET) was measured. It was found that GATs form both homo- and hetero-dimers in N2A and HEK-293 cells. Microdomain localization of GATs as investigated by detergent resistant membrane fractions after treatment of tissue with Brij-98 or Triton X-100 revealed that BGT1 and GAT1 mostly localize to non-membrane rafts independent of the detergent used. However, GAT3 localizes to membrane rafts when using Brij-98. Taken together, these results suggest that the observed hetero dimerization of GATs in the FRET study is unlikely to have functional implications since the GATs are located to very different cellular compartments and cell types.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700