Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition
详细信息    查看全文
  • 作者:Salvador Lladó ; Lucia Žifčáková ; Tomáš Větrovský
  • 关键词:Coniferous forest ; Bacterial ecology ; Acidobacteria ; Decomposition ; Extracellular enzymes ; Cellulose
  • 刊名:Biology and Fertility of Soils
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:251-260
  • 全文大小:517 KB
  • 参考文献:Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentral CrossRef PubMed
    Baldrian P (2009) Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ 55:370–378
    Baldrian P, Kolařík M, Štursová M, Kopec J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček C, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258PubMedCentral CrossRef PubMed
    Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554PubMedCentral CrossRef PubMed
    Berlemont R, Martiny AC (2015) Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 81:1513–1519PubMedCentral CrossRef PubMed
    Caporaso JG, Lauber CL, Walters WA, Berg-Lions D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624PubMedCentral CrossRef PubMed
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:633–642CrossRef
    Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834PubMedCentral CrossRef PubMed
    de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811CrossRef PubMed
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125PubMedCentral CrossRef PubMed
    Eichorst SA, Kuske CR (2012) Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327PubMedCentral CrossRef PubMed
    Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedCentral CrossRef PubMed
    Elsas JD, Jansson JK, Trevors JT (2007) Modern soil microbiology, 2nd edn. CRC Press/Taylor & Francis, Boca Raton, FL, 646 pp
    Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843CrossRef
    George IF, Hartmann M, Liles MR, Agathos SN (2011) Recovery of as-yet-uncultured soil Acidobacteria on dilute solid media. Appl Environ Microbiol 77:8184–8188PubMedCentral CrossRef PubMed
    Gessner MO, Swan CM, Dang CK, Mckie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380CrossRef PubMed
    Haichar FZ, Achouak W, Christen R, Heulin T, Marol C, Marais M, Mougel C, Ranjard L, Balesdent J, Berge O (2007) Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9:625–634CrossRef PubMed
    Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. ISME J 6:2199–2218PubMedCentral CrossRef PubMed
    Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396PubMedCentral CrossRef PubMed
    Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, a Reyes J, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRef PubMed
    Lauro MF, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ et al (2009) The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–15533PubMedCentral CrossRef PubMed
    Lin YT, Lin CP, Chaw SM, Whitman WB, Coleman DC, Chiu CY (2010) Bacterial community of very wet and acidic subalpine forest and fire-induced grassland soils. Plant Soil 332:417–427CrossRef
    López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50CrossRef
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386CrossRef
    Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. PNAS 98:14784–14789PubMedCentral CrossRef PubMed
    Nacke H, Thurmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. Plos One 6:e17000PubMedCentral CrossRef PubMed
    Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzimology: classical and molecular approaches. Biol Fertil Soils 48:743–762CrossRef
    Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur J Soil Sci 62:105–116CrossRef
    Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 13:1800–1814CrossRef PubMed
    Rawat SR, Männistö MK, Bromberg Y, Häggblom MM (2012) Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiol Ecol 82:341–355CrossRef PubMed
    Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907PubMedCentral CrossRef PubMed
    Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666CrossRef PubMed
    Singh D, Lee-Cruz L, Kim WS, Kerfahi D, Chun JH, Adams JM (2014) Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol Biochem 68:140–149CrossRef
    Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160PubMedCentral CrossRef PubMed
    Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746CrossRef PubMed
    Uksa M, Schloter M, Kautz T, Athmann M, Köpke U, Fischer D (2015) Spatial variability of hydrolytic and oxidative potential enzyme activities in different subsoil compartments. Biol Fertil Soils 51:517–521CrossRef
    van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRef PubMed
    VanInsberghe D, Hartmann M, Stewart GR, Mohn WW (2013) Isolation of a substantial proportion of forest soil bacterial communities detected via pyrotag sequencing. Appl Environ Microbiol 79:2096–2098PubMedCentral CrossRef PubMed
    VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J. doi:10.​1038/​ismej.​2015.​54 PubMed
    Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7PubMed
    Větrovský T, Baldrian P (2013a) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037CrossRef
    Větrovský T, Baldrian P (2013b) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. Plos One 8:e57923PubMedCentral CrossRef PubMed
    Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. Plos One 9:e89108PubMedCentral CrossRef PubMed
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCentral CrossRef PubMed
    Žifčáková L, Větrovský T, Howe A, Baldrian P (2015) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol in press, doi: 10.1111/1462-2920.13026.
    Zimmerman AE, Martiny AC, Allison SD (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199PubMedCentral CrossRef PubMed
  • 作者单位:Salvador Lladó (1)
    Lucia Žifčáková (1)
    Tomáš Větrovský (1)
    Ivana Eichlerová (1)
    Petr Baldrian (1)

    1. Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, Vídeňská 1083, 14220, Praha 4, Czech Republic
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Life Sciences
    Agriculture
    Soil Science and Conservation
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0789
文摘
Coniferous forest soils have an indispensable ecological role in the global cycles of nutrients on Earth. Despite the fact that microbial communities in this ecosystem were subject of multiple studies, the involvement of individual taxa in the processes of organic matter transformation and the functional roles of dominant and active bacteria are largely unknown. Here, we have performed a comprehensive isolation effort to obtain multiple dominant bacterial taxa from a Picea abies forest soil and provide their physiological characterization. This information allows us to link ecological traits with groups of microorganisms. In the study, conventional culture techniques at acidic pH and low-nutrient content led to the recovery of 299 bacterial isolates. The isolates represented operational taxonomic units (OTUs) that contained 20 and 32 % of all bacterial genomes detected in the litter and soil by 16S amplicon analysis, including some of those bacterial strains representing the most abundant and active OTUs. These included also several isolates of the still underexplored phylum of the Acidobacteria, all of them belonging to the subdivision 1 of the phylum. Acidobacterial isolates produced the widest range of enzymes among all isolates and highest enzyme activities in acidic conditions. Moreover, members of the Acidobacteria represented more than 50 % of the isolates able to grow on disaccharides produced during the breakdown of cellulose, chitin, and starch. Our results indicate that Acidobacteria may play an important ecological role by degrading polysaccharides of plant and fungal origin in the important ecosystems of acidic coniferous forests. Keywords Coniferous forest Bacterial ecology Acidobacteria Decomposition Extracellular enzymes Cellulose

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700