Poly(2-substituted-2-oxazoline) surfaces for dermal fibroblasts adhesion and detachment
详细信息    查看全文
  • 作者:Andrzej Dworak (1)
    Alicja Utrata-Weso?ek (1)
    Natalia Oleszko (1)
    Wojciech Wa?ach (1)
    Barbara Trzebicka (1)
    Jacek Anio? (2)
    Aleksander L. Sieroń (2)
    Agnieszka Klama-Bary?a (3)
    Marek Kawecki (3)
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:25
  • 期:4
  • 页码:1149-1163
  • 全文大小:2,886 KB
  • 参考文献:1. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol Rapid Commun. 1990;11:571-. CrossRef
    2. Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med. 2009;267:54-0. CrossRef
    3. Kikuchi A, Okano T. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release. 2005;101:69-4. CrossRef
    4. Nagase K, Kobayashi J, Okano T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J R Soc Interface. 2009;6:S293-09. CrossRef
    5. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Copolymerization of 2-carboxyisopropylacrylamide with / N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules. 2003;4:344-. CrossRef
    6. Ebara M, Yamato M, Nagai S, Aoyagi T, Kikuchi A, Sakai K, Okano T. Incorporation of new carboxylate functionalized co-monomer to temperature-responsive polymer-grafted cell culture surfaces. Surf Sci. 2004;570:134-1. CrossRef
    7. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials. 2005;26:1885-3. CrossRef
    8. Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules. 2003;4:1733-. CrossRef
    9. Nitschke N, Gramm S, Gotze T, Valtink M, Drichel J, Voit B, Engelmann K, Werner C. Thermo-responsive poly(NIPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A. 2007;80A:1003-0. CrossRef
    10. Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials. 2008;29:2565-2. CrossRef
    11. Hatakeyama H, Kikuchi A, Yamato M, Okano T. Patterned bifunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth and thermally induced detachment. Biomaterials. 2007;28:3632-3. CrossRef
    12. Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T. Preparation of thermoresponsive polymer brush surfaces and their interactions with cells. Biomaterials. 2008;29:2073-1. CrossRef
    13. Takahashi H, Matsuzaka N, Nakayama M, Kikuchi A, Yamato M, Okano T. Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules. 2012;13:253-0. CrossRef
    14. Matsuda N, Shimizu T, Yamato M, Okano T. Tissue engineering based on cell sheet technology. Adv Mater. 2007;19:3089-9. CrossRef
    15. Hatakeyama H, Kikuchi A, Yamato M, Okano T. Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials. 2006;27:5069-8. CrossRef
    16. Wischerhoff E, Glatzel S, Uhlig K, Lankenau A, Lutz JF, Laschewsky A. Tuning the thickness of polymer brushes grafted from non-linearly growing multilayer assemblies. Langmuir. 2009;25:5949-6. CrossRef
    17. Dworak A, Utrata-Weso?ek A, Szweda D, Kowalczuk A, Trzebicka B, Anio? J, Sieroń AL, Klama-Bary?a A, Kawecki M. Poly[tri(ethyleneglycol) ethyl ether methacrylate]-coated surfaces for controlled fibroblasts culturing. ACS Appl Mater Interfaces. 2013;5:2197-07. CrossRef
    18. Wischerhoff E, Uhlig K, Lankenau A, Borner HG, Laschewsky A, Duschl C, Lutz JF. Controlled cell adhesion on PEG-based switchable surfaces. Angew Chem Int Edit. 2008;47:5666-. CrossRef
    19. de la Rosa V. Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med. 2013;. doi:10.1007/s10856-013-5034-y .
    20. Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV. Structure–property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Control Release. 2011;153:73-2. CrossRef
    21. Kronek J, Kronekova Z, Luston J, Paulovicova E, Paulovicova L, Mendrek B. In vitro and cytotoxicity studies of poly(2-oxazolines). J Mater Sci Mater Med. 2011;22:1725-4. CrossRef
    22. Luxenhofer R, Han Y, Schultz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(oxazoline)s as polymer therapeutics. Macromol Rapid Commun. 2012;33:1613-1. CrossRef
    23. Woodle MC, Engbers CM, Zalipsky S. New amphipatic polymer–lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjugate Chem. 1994;5:493-. CrossRef
    24. Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437-6. CrossRef
    25. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci. 2012;12:926-6. CrossRef
    26. Aoi K, Suzuki H, Okada M. Architectural control of sugar-containing polymers by living polymerization: ring-opening polymerization of 2-oxazolines initiated with carbohydrate derivatives. Macromolecules. 1992;25:7073-. CrossRef
    27. Guillerm B, Monge S, Lapinte V, Robin JJ. How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun. 2012;33:1600-2. CrossRef
    28. Schlaad H, Diehl C, Gress A, Meyer M, Demirel A, Nur Y, Bertin A. Poly(oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun. 2010;31:511-5. CrossRef
    29. Makino A, Kobayashi S. Chemistry of 2-oxazolines: a crossing of cationic ring-opening polymerization and enzymatic ring-opening addition. J Polym Sci Pol Chem. 2010;48:1251-0. CrossRef
    30. Dworak A, Trzebicka B, Wa?ach W. 2-oxazolines, polymerization. In: Salamone JC, editor. Polymeric materials encyclopedia. Boca Raton: CRC Press; 1996. p. 4842-2.
    31. Agrawal M, Rueda JC, Uhlmann P, Muller M, Simon F, Stamm M. Facile approach to grafting of poly(2-oxazoline) brushes on macroscopic surfaces and applications. ACS Appl Mater Interfaces. 2012;4:1357-4. CrossRef
    32. Lehmann T, Ruhe J. Polyethyloxazoline monolayers for polymer supported biomembrane models. Macromol Symp. 1999;142:1-2. CrossRef
    33. Jordan R, Ulman A. Surface initiated living cationic polymerization of 2-oxazolines. J Am Chem Soc. 1998;120:243-. CrossRef
    34. Jordan J, West N, Ulman A, Chou YM, Nuyken O. Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules. 2001;34:1606-1. CrossRef
    35. Hutter NA, Reitinger A, Garrido JA, Jordan R. Biofunctionalization of patterned poly(2-oxazoline) bottle-brush brushes on diamond. Polym Preprints. 2012;53:303-.
    36. Hutter NA, Steenackers M, Reitinger A, Williams OA, Garrido JA, Jordan R. Nanostructured polymer brushes and protein density gradients on diamond by carbon templating. Soft Matter. 2011;7:4861-. CrossRef
    37. Zhang N, Steenackers M, Luxenhofer R, Jordan R. Bottle-brush brushes: cylindrical molecular brushes of poly(2-oxazoline) on glassy carbon. Macromolecules. 2009;42:5345-1. CrossRef
    38. Rehfeldt F, Tanaka M, Pagnoni L, Jordan R. Static and dynamic swelling of grafted poly(2-alkyl-2-oxazoline)s. Langmuir. 2002;18:4908-4. CrossRef
    39. Loontjens T, Rique-Lurbet L. Synthesis of alkyl trimethoxysilane polyoxazolines and their application as coatings on glass fibres. Des Monomers Polym. 1999;2:217-9. CrossRef
    40. Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl Mater Interfaces. 2011;3:3463-1. CrossRef
    41. Jordan R, Graf K, Riegel H, Unger K. Polymer-supported alkyl monolayers on silica: synthesis and self-assembly of terminal functionalized poly( / N-propionylethylenimine)s. Chem Commun. 1996;9:1025-. CrossRef
    42. Hutter NA, Reitinger A, Zhang N, Steenackers M, Williams OA, Garrido JA, Jordan R. Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond. Phys Chem Chem Phys. 2010;12:4360-. CrossRef
    43. Witte H, Seeliger W. Cyclische imidsaureester aus nitrilern und aminoalkoholen. Liebigs Ann Chem. 1974;6:996-009. CrossRef
    44. Utrata-Weso?ek A, Oleszko N, Trzebicka B, Anio? J, Zagdańska M, Lesiak M, Sieroń AL, Dworak A. Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. Eur Polym J. 2013;49:106-7. CrossRef
    45. Hoogenboom R, Fijten MWM, Wijnans S, van den Berg AMJ, Thijs HML, Schubert US. High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. J Comb Chem. 2006;8:145-. CrossRef
    46. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44:2255-1. CrossRef
    47. Howarter JA, Youngblood JP. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langumir. 2006;22:11142-. CrossRef
    48. Meyer M, Antonietti M, Schlaad H. Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). Soft Matter. 2007;3:430-. CrossRef
    49. Demirel AL, Meyer M, Schlaad H. Formation of polyamide nanofibers by directional crystallization in aqueous solution. Angew Chem Int Ed. 2007;46:8622-. CrossRef
    50. Morimoto N, Obeid R, Yamane S, Winnik FM, Akiyoshi K. Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharides. Soft Matter. 2009;5:1597-00. CrossRef
    51. Diehl C, Dambrowsky I, Hoogenboom R, Schlaad H. Self-assembly of poly(2-alkyl-2-oxazoline)s by crystallization in ethanol–water mixtures below the upper critical solution temperature. Macromol Rapid Commun. 2011;32:1753-. CrossRef
    52. Hoeppener S, Wiesbrock F, Hoogenboom R, Thijs HML, Schubert US. Morphologies of spin-coated films of a library of diblock copoly(2-oxazoline)s and their correlation to the corresponding surface energies. Macromol Rapid Commun. 2006;27:405-1. CrossRef
    53. Hoogenboom R, Fijten MWM, Paulus RM, Thijs HML, Hoeppener S, Kickelbick G, Schubert US. Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. Polymer. 2006;47:75-4. CrossRef
    54. Plunkett KN, Zhu X, Moore JS, Leckband DE. PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir. 2006;22:4259-6. CrossRef
    55. Kitano H, Kondo T, Suzuki H, Ohno K. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. J Colloid Interface Sci. 2010;345:325-1. CrossRef
    56. Montagne F, Polesel-Maris J, Pugin R, Heinzelmann H. Poly( / N-isopropylacrylamide) thin films densley grafted onto gold surface: preparation, characterization, and dynamic AFM study of temperature-induced chain conformational changes. Langmuir. 2009;25:983-1. CrossRef
    57. Girotto G, Fabbro C, Braghetta P, Vitale P, Volpin D, Bressan GM. Analysis of transcription of the / Col6a1 gene in a specific set of tissues suggests a new variant of enhancer region. J Biol Chem. 2000;275:17381-0. CrossRef
  • 作者单位:Andrzej Dworak (1)
    Alicja Utrata-Weso?ek (1)
    Natalia Oleszko (1)
    Wojciech Wa?ach (1)
    Barbara Trzebicka (1)
    Jacek Anio? (2)
    Aleksander L. Sieroń (2)
    Agnieszka Klama-Bary?a (3)
    Marek Kawecki (3)

    1. Center of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
    2. Department of General, Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
    3. Center for Burn Treatment, Jana Pawla II, 41-100, Siemianowice Slaskie, Poland
  • ISSN:1573-4838
文摘
The thermoresponsive surfaces of brush structure (linear polymer chains tethered on the surface) based on poly(2-isopropyl-2-oxazoline)s and copolymers of 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline were obtained using the grafting-to method. The living oxazoline (co)polymers have been synthesized by cationic ring-opening polymerization and subsequently terminated by the reactive amine groups present on the surface. The changes in the surface morphology, philicity and thickness occurring during surface modification were monitored via atomic force microscopy, contact angle and ellipsometry. The thickness of the (co)poly(2-substituted-2-oxazoline) layers ranged from 4 to 11?nm depending on the molar mass of immobilized polymer and reversibly varied with the temperature changes. This confirmed thermoresponsive properties of obtained surfaces. The obtained polymer surfaces were used as a support for dermal fibroblast culture and detachment. The fibroblasts-adhesion and proliferation on the polymer surfaces were observed when the culture temperature was above the cloud point temperature of the immobilized polymer. Lowering the temperature resulted in the detachment of the dermal fibroblast sheets from the polymer layers, which makes these surfaces suitable for the treatment of wounds and in skin tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700