Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration
详细信息    查看全文
  • 作者:Mehmet Bilgin (1)
    Christiane Neuhof (1)
    Oliver Doerr (1)
    Utz Benscheid (1)
    Sheila S. Andrade (3)
    Astrid Most (1)
    Yaser Abdallah (2)
    Mariana Parahuleva (1)
    Dursun Guenduez (1)
    Maria L. Oliva (3)
    Ali Erdogan (1)
  • 关键词:Bauhinia bauhinioides cruzipain inhibitor ; Endothelial cells ; Calcium ; Hyperpolarization ; Proliferation
  • 刊名:Journal of Physiology and Biochemistry
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:66
  • 期:4
  • 页码:283-290
  • 全文大小:207KB
  • 参考文献:1. Adams DJ, Barakeh J, Laskey R, Van Breemen C (1989) Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 3:2389-400
    2. Araújo APU, Daiane Hansen D, Vieira DF, de Oliveira C, Santana LA, Beltramini LM, Sampaio CAM, Sampaio MU, Oliva MLV (2005) Kunitz-type / Bauhinia bauhinioides inhibitors devoid of disulfide bridges: isolation of the cDNAs, heterologous expression and structural studies. Biol Chem 386:561-68 CrossRef
    3. Bando Y, Kominami E, Katunuma N (1986) Purification and tissue distribution of rat cathepsin L. J Biochem (Tokyo) 100:35-2
    4. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44(1):1-0
    5. Borgo?o CA, Diamandis EP (2004) The emerging roles of human tissue kallikrein in cancer. Nat Rev Cancer 11:876-90 CrossRef
    6. Cazzulo JJ, Stoka V, Turk V (1997) Cruzipain, the major cysteine proteinase from the protozoan parasite Trypanosoma cruzi. Biol Chem 378(1):1-0 CrossRef
    7. Cechinel Filho V (2009) Chemical composition and biological potential of plants from the genus / Bauhinia. Phytother Res 23:1347-354 CrossRef
    8. De Oliveira C, Santana LA, Carmona AK, Cezari MH, Sampaio MU, Sampaio CAM, Oliva MLV (2001) Structure of cruzipain/cruzain inhibitors isolated from / Bauhinia bauhinioides seeds. Biol Chem 382:847-52 CrossRef
    9. Dedio J, Wiemer G, Rütten H, Dendorfer A, Sch?lkens BA, Müller-Esterl W, Wohlfart P (2001) Tissue kallikrein KLK1 is expressed / de novo in endothelial cells and mediates relaxation of human umbilical veins. Biol Chem 382:1483-490 CrossRef
    10. Del Nery E, Juliano MA, Lima APCA, Scharfstein J, Juliano L (1997) Kininogenase activity by the major cysteinyl proteinase (cruzipain) from / Trypanosoma cruzi. J Biol Chem 272:25713-5718 CrossRef
    11. Desmazes C, Gauthier F, Lalmanach G (2001) Cathepsin L, but not cathepsin B, is a potential kininogenase. Biol Chem 382(5):811-15 CrossRef
    12. Emanueli C, Minasi A, Zacheo A, Chao J, Chao L, Salis MB, Straino S, Tozzi MG, Smith R, Gaspa L, Bianchini G, Stillo F, Capogrossi MC, Madeddu P (2001) Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischaemia. Circulation 103:125-32
    13. Emanueli C, Salis MB, Stacca T, Pintus G, Kirchmair R, Isner JM, Pinna A, Gaspa L, Regoli D, Cayla C, Pesquero JB, Bader M, Madeddu P (2002) Targeting kinin B1 receptor for therapeutic neovascularization. Circulation 105:360-66 CrossRef
    14. Emanueli C, Salis MB, Van Linthout S, Meloni M, Desortes E, Silvestre JS, Clergue M, Figueroa CD, Gadau S, Condorelli G, Madeddu P (2004) Akt/protein kinase B and endothelial nitric oxide synthase mediate muscular neovascularization induced by tissue kallikrein gene transfer. Circulation 110(12):1638-644 CrossRef
    15. Erdogan A, Most AK, Wienecke B, Fehsecke A, Leckband C, Voss R, Grebe MT, Tillmanns H, Schaefer CA, Kuhlmann CR (2007) Apigenin-induced nitric oxide production involves calcium-activated potassium channels and is responsible for antiangiogenic effects. J Thromb Haemost 5(8):1774-781 CrossRef
    16. Jaffe EA, Nachmann RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins—identification by morphological and immunological criteria. J Clin Investig 52:2745-756 CrossRef
    17. Joseph LJ, Chang LC, Stamenkovich D, Sukhatme VP (1988) Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J Clin Invest 81:1621-629 CrossRef
    18. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cel 5(5):443-53 CrossRef
    19. Kimura C, Oike M, Koyama T, Ito Y (2001) Alterations of Ca2+ mobilizing properties in migrating endothelial cells. Am J Physiol Heart Circ Physiol 281(2):H745–H754
    20. Kirschke H, Kembhavi AA, Bohley P, Alan J, Barett AJ (1982) Action of rat liver cathepsin L on collagen and other substrates. Biochem J 201:367-72
    21. Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA (1995) Angiogenesis: role of calcium-mediated signal transduction. Proc Natl Acad Sci USA 92(5):1307-311 CrossRef
    22. Koutsioumpa M, Hatziapostolou M, Mikelis C, Koolwijk P, Papadimitriou E (2009) Aprotinin stimulates angiogenesis and human endothelial cell migration through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta. Eur J Pharmacol 602(2-3):245-49 CrossRef
    23. Kuhlmann CR, Schaefer CA, Kosok C, Abdallah Y, Walther S, Lüdders DW, Neumann T, Tillmanns H, Sch?fer C, Piper HM, Erdogan A (2005) Quercetin-induced induction of the NO/cGMP pathway depends on Ca2+-activated K+ channel-induced hyperpolarization-mediated Ca2+-entry into cultured human endothelial cells. Planta Med 71(6):520-24 CrossRef
    24. Laskowski M Jr, Kato I (1980) Protein inhibitors of proteinases. Ann Rev Biochem 49:593-26 CrossRef
    25. Liu J, Sukhova GK, Yang JT, Sun J, Ma L, Ren A, Xu WH, Fu H, Dolganov GM, Hu C, Libby P, Shi GP (2006) Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184:302-11 CrossRef
    26. Mason RW, Johnson DA, Barett AJ, Chapman HA (1986) Elastinolytic activity of human cathepsin L. Biochem J 233:925-27
    27. Menegatti E, Guarneri M, Bolognesi M, Ascenzi P, Amiconi G (1984) Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz) to human urinary kallikrein and to porcine pancreatic beta-kallikreins A and B. J Mol Biol 176(3):425-30 CrossRef
    28. Miao RQ, Agata J, Chao L, Chao J (2002) Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood 100:3245-252 CrossRef
    29. Nakahata AM, Bueno NR, Rocha HAO, Franco CRC, Chammas R, Nakaie CR, Jasiulionis MG, Nader HB, LA HB S, Sampaio MU (2006) Oliva MLV structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif. Int J Biol Macromol 40:22-9 CrossRef
    30. Neuhof C, Oliva ML, Maybauer D, Maybauer M, de Oliveira C, Sampaio MU, Sampaio CA, Neuhof H (2003) Effect of plant Kunitz inhibitors from / Bauhinia bauhinioides and / Bauhinia rufa on pulmonary edema caused by activated neutrophils. Biol Chem 384:939-44 CrossRef
    31. Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415-459
    32. Oliva MLV, Sampaio MU (2008) / Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties. Biol Chem 389:1007-013 CrossRef
    33. Oliva MLV, Andrade SA, Juliano MA, Sallai RC, Juliano L, Sampaio MU, Pott VJ, Sampaio CAM (2003) Kinetic characterization of factor Xa binding using a quenched fluorescent substrate based on the reactive site of factor Xa inhibitor from / Bauhinia ungulata seeds. Curr Med Chem 10(13):1085-093 CrossRef
    34. Oliveira C, Santana LA, Carmona AK, Cezari MH, Sampaio MU, Sampaio CAM, Oliva MLV (2001) Structure of cruzipain/cruzain inhibitors isolated from Bauhinia bauhinioides seeds. Biol Chem 382:847-52 CrossRef
    35. Plendl J, Snyman C, Naidoo S, Sawant S, Mahabeer R, Bhoola KD (2000) Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells. Biol Chem 381(11):1103-115 CrossRef
    36. Puzer L, Vercesi J, Alves MF, Barros NM, Araujo MS, Aparecida Juliano M, Reis ML, Juliano L, Carmona AK (2005) A possible alternative mechanism of kinin generation in vivo by cathepsin L. Biol Chem 386(7):699-04 CrossRef
    37. Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425-49 CrossRef
    38. Sarnpaio CAM, Oliva MLV, Sampaio MU, Batista IFC, Bueno NR, Tanaka AS, Auerswald EA, Fritz H (1996) Plant serine proteinase inhibitors. Structure and biochemical applications on plasma kallikrein and related enzymes. Immunopharmacology 32:62-6 CrossRef
    39. Schaefer CA, Kuhlmann CR, Gast C, Weiterer S, Li F, Most AK, Neumann T, Backenkohler U, Tillmanns H, Waldecker B, Wiecha J, Erdogan A (2004) Statins prevent oxidized low-density lipoprotein- and lysophosphatidylcholine-induced proliferation of human endothelial cells. Vascul Pharmacol 41:67-3 CrossRef
    40. Stone OA, Richer C, Emanueli C, van Weel V, Quax PH, Katare R, Kraenkel N, Campagnolo P, Barcelos LS, Siragusa M, Sala-Newby GB, Baldessari D, Mione M, Vincent MP, Benest AV, Al Haj Zen A, Gonzalez J, Bates DO, Alhenc-Gelas F, Madeddu P (2009) Critical role of tissue kallikrein in vessel formation and maturation. Arterioscler Thromb Vasc Biol 29:617-19 CrossRef
    41. Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann WK, Christoph Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, Dimmeler S (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularisation. Nat Med 11(2):206-13 CrossRef
    42. Yao YY, Yin H, Shen B, Smith RS Jr, Liu Y, Gao L, Chao L, Chao J (2008) Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3b pathway. Cardiovasc Res 80(3):354-64 CrossRef
    43. Yayama K, Kunimatsu N, Teranishi Y, Takano M, Okamoto H (2003) Tissue kallikrein is synthesized and secreted by human vascular endothelial cells. Biochim Biophys Acta 1593:231-38 CrossRef
    44. Zheng X, Chu F, Mirkin BL, Sudha T, Mousa SA, Rebbaa A (2008) Role of the proteolytic hierarchy between cathepsin L, cathepsin D and caspase-3 in regulation of cellular susceptibility to apoptosis and autophagy. Biochim Biophys Acta 1783(12):2294-300 CrossRef
    45. Zhou GX, Chao L, Chao J (1992) Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem 267:25873-5880
  • 作者单位:Mehmet Bilgin (1)
    Christiane Neuhof (1)
    Oliver Doerr (1)
    Utz Benscheid (1)
    Sheila S. Andrade (3)
    Astrid Most (1)
    Yaser Abdallah (2)
    Mariana Parahuleva (1)
    Dursun Guenduez (1)
    Maria L. Oliva (3)
    Ali Erdogan (1)

    1. Department of Cardiology and Angiology, Justus-Liebig-University of Giessen, Klinikstrasse 36, 35392, Giessen, Germany
    3. Department of Biochemistry, Universidade Federal de S?o Paulo, S?o Paulo, Brazil
    2. Institute of Physiology, Justus-Liebig-University of Giessen, Giessen, Germany
  • ISSN:1877-8755
文摘
Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-00?μmol/L) for 48?h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-00?μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2] i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-00?μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100?μmol/L (35.1?±-.8% as compared to control (p?≤-.05; n--5)). As compared to the control, the addition of BbCI (100?μmol/L) caused a significant increase of systolic Ca2+ of 28.4?±-.0% after 30?min incubation. HUVEC treatment with BbCI (100?μmol/L) showed a weak but significant decrease of the membrane potential of 9.5?±-.9% as compared to control (p?≤-.05; n--0). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700