Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators
详细信息    查看全文
  • 作者:Konstantinos Andrianesis (1)
    Anthony Tzes (1)

    1. Department of Electrical and Computer Engineering
    ; University of Patras ; Rio ; Greece
  • 关键词:Upper limb prosthetics ; Multifingered hands ; Underactuated robots ; Smart actuators ; Shape memory alloys ; Resistance feedback control ; 68T40
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:78
  • 期:2
  • 页码:257-289
  • 全文大小:9,111 KB
  • 参考文献:1. Rosa, A.D.L., Walker, G.R.L., Goldsmith, J.B., Elias, J.H., Godden, M.P., Greenhill, R.M.: Robotic hand. US Patent 2011/0040408 A1
    2. Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimb枚ck, T., Hirzinger, G., Siegwart, R.: The hand of the DLR hand arm system: Designed for interaction, Vol. 31 (2012)
    3. Bridgwater, L.B., Ihrke, C.A., Diftler, M.A., Abdallah, M.E., Radford, N.A., Rogers, J.M., Yayathi, S., Askew, R.S., Linn, D.M.: The Robonaut 2 hand - designed to do work with tools. In: 2012 IEEE International Conference on Robotics and Automation (ICRA) Saint Paul, pp. 3425鈥?430. Minnesota (2012)
    4. Kyberd, PJ, Gow, D, Chappell, PH Research and the future of myoelectric prosthetics. In: Muzumdar, A eds. (2004) Prostheses, Powered Upper Limb. Springer, Berlin Heidelberg, pp. 175-190 CrossRef
    5. Pons, JL, Rocon, E, Ceres, R, Reynaerts, D, Saro, B, Levin, S, Moorleghem, WV (2004) The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects. Autonom. Robots 16: pp. 143-163 CrossRef
    6. Kargov, A, Ivlev, O, Pylatiuk, C, Asfour, T, Schulz, S, Gr盲ser, A, Dillmann, R, Bretthauer, G (2007) Applications of a fluidic artificial hand in the field of rehabilitation. In: Kommu, S.S. (eds.) Rehabilitation Robotics, p. 648. Itech Education and Publishing, Vienna CrossRef
    7. Biddiss, E, Beaton, D, Chau, T (2007) Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Tech. 2: pp. 346-357 CrossRef
    8. Pylatiuk, C, Schulz, S, Doderlein, L (2007) Results of an internet survey of myoelectric prothetic hand users. Prosthetics Orthot. Int. 31: pp. 362-370 CrossRef
    9. Dechev, N., Cleghorn, W.L., Naumann, S.: Thumb design of an experimental prosthetic hand. In: International Symposium On Robotics and Automation, pp. 7鈥?2. Monterrey (2000)
    10. Touch Bionics, Inc.: i-Limb Ultra Revolution data sheet
    11. Cipriani, C, Controzzi, M, Carrozza, MC (2011) The SmartHand transradial prosthesis. J. Neuro Eng. Rehab. 8: pp. 1-13
    12. Evans, C.O., Perry, N.C., Van Der Merwe, D.A., Violette, K.D., Coulter, S.M., Doyon, T.A., Blumberg, J.R.D.: Arm prosthetic device. US Patent 2011/0257765 A1
    13. Schulz, S., Pylatiuk, C., Bretthauer, G.: A new ultralight anthropomorphic hand. In: 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 2433, pp. 2437鈥?441. Seoul (2001)
    14. Cura, VOD, Cunha, FL, Aguiar, ML, Cliquet, AJr (2003) Study of the different types of actuators and mechanisms for upper limb prostheses. Artif. Organs 27: pp. 507-516 CrossRef
    15. Love, L.J., Lind, R.F., Jansen, J.F.: Mesofluidic actuation for articulated finger and hand prosthetics. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). St. Louis (2009)
    16. Kumar, PK, Lagoudas, DC (2008) Introduction to shape memory alloys. In: Lagoudas, D.C. (eds.) Shape Memory Alloy Modelling and Engineering Applications, pp. 1鈥?1. Springer, New York CrossRef
    17. Mavroidis, C., Pfeiffer, C., Mosley, M.J.: Conventional actuators, shape memory alloys, and electrorheological fluids. In: Bar-Cohen, Y. (ed.) Automation, Miniature Robotics & Sensors for Non-Destructive Testing & Evaluation. pp. 189鈥?14. The American Society for Nondestructive Testing, Inc. (ASNT) (2000)
    18. DeLaurentis, KJ, Mavroidis, C (2002) Mechanical design of a shape memory alloy actuated prosthetic hand. Tech Health Care 10: pp. 91-106
    19. DeLaurentis, KJ, Mavroidis, C (2004) Rapid fabrication of a non-assembly robotic hand. Assem Autom 24: pp. 394-405 CrossRef
    20. Maeno, T., Hino, T.: Miniature five-fingered robot hand driven by shape memory alloy actuators. In: 12th IASTED International Conference, pp. 174鈥?79. Honolulu (2006)
    21. Cho, K.-J., Rosmarin, J., Asada, H.: SBC hand: a lightweight robotic hand with an SMA actuator array implementing C-segmentation. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 921鈥?26 (2007)
    22. Jung, S., Bae, J., Moon, I.: Lightweight prosthetic hand with five fingers using SMA actuator. In: 11th International Conference on Control, Automation and Systems (ICCAS) Gyeonggi-do, pp. 1797鈥?800. Korea (South) (2011)
    23. Lee, JH, Okamoto, S, Matsubara, S (2012) Development of multi-fingered prosthetic hand using shape memory alloy type artificial muscle. Comput. Technol. Appl. 3: pp. 477-484
    24. Bundhoo, V.: Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, Thesis, University of Victoria (2009)
    25. Saether, O.F.: Flexinol as actuator for a humanoid finger-possibilities and challenges. Thesis, University of Oslo (2008)
    26. Lan, C.-C., Yang, Y.-N.: An analytical design method for a shape memory alloy wire actuated compliant finger. In: ASME 2008 International Design Engineering Technical Conferences (IDETC) & Computers and Information in Engineering Conference (CIE), vol. 3鈥?, pp. 1鈥?0. Brooklyn (2008)
    27. Ahmed, MA, Taher, MF, Metwalli, SM (2012) Shape memory alloy actuator system optimization for new hand prostheses World Academy of Science. Eng. Technol. 61: pp. 1021-1026
    28. Loh, C.S., Yokoi, H., Arai, T.: New shape memory alloy actuator: Design and application in the prosthetic hand. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Shanghai (2005)
    29. Yang, K, Wang, Y (2008) Design, drive and control of a novel SMA-actuated humanoid flexible gripper. J. Mech. Sci. Technol. 22: pp. 895-904 CrossRef
    30. Price, AD, Jnifene, A, Naguib, HE (2007) Design and control of a shape memory alloy based dexterous robot hand. Smart Mater. Struct. 16: pp. 1401-1414 CrossRef
    31. Dilibal, S, Guner, E, Akturk, N (2002) Three-finger SMA robot hand and its practical analysis. Robotica 20: pp. 175-180 CrossRef
    32. Andrianesis, K, Tzes, A, Kolyvas, E, Koveos, Y (2008) Biomimetic actuation and control of an anthropomorphic finger. Int. Rev. Mech. Eng. (IREME) 2: pp. 163-171
    33. Andrianesis, K., Tzes, A.: Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In: 2nd IEEE RAS/EMBS International Conference Biomedical Robotics and Biomechatronics (BioRob), pp. 517鈥?22. Scottsdale (2008)
    34. Andrianesis, K., Koveos, Y., Nikolakopoulos, G., Tzes, A.: Experimental study of a shape memory alloy actuation system for a novel prosthetic hand. In: Cismasiu, C. (ed.) Shape Memory Alloys, pp. 81-106. InTech (2010)
    35. Andrianesis, K., Tzes, A.: Design of an innovative prosthetic hand with compact shape memory alloy actuators. In: 21st Medit. Conference Control and Automation (MED), Platanias-Chania, Crete (2013)
    36. Jones, LA, Lederman, SJ (2006) Human hand function. Oxford University Press, Inc., New York CrossRef
    37. Banks, J.L.: Design and control of an anthropomorphic robotic finger with multi-point tactile sensation. Thesis, Massachusetts Institute of Technology (2001)
    38. Hollister, A, Buford, WL, Myers, LM, Giurintano, DJ, Novick, A (1992) The axes of rotation of the thumb carpometacarpal joint. J. Orthop. Res. 10: pp. 454-460 CrossRef
    39. LaViola, J.J. Jr.: A survey of hand posture and gesture recognition techniques and technology. In: vol. CS-99-11. Brown University, Providence (1999)
    40. Feix, T.: Anthropomorphic hand optimization based on a latent space analysis, Thesis, Technical University of Vienna (2011)
    41. Henderson, A., Pehoski, C.: Hand function in the child: Foundations for remediation. Mosby, St. Louis, Missouri (2006)
    42. NASA: Anthropometry and biomechanics. In: Man-systems integration standards, vol. 1. vol. 3 (1995)
    43. Weir, RF, Sensinger, JW (2009) The design of artificial arms and hands for prosthetic applications. In: Kutz, M. (ed.) Biomedical Engineering and Design Handbook, pp. 537鈥?98. McGraw-Hill, New York
    44. Sangole, AP, Levin, MF (2008) Arches of the hand in reach to grasp. J. Biomech. 41: pp. 829-837 CrossRef
    45. Gosselin, C., Pelletier, F., Laliberte, T.: An anthropomorphic underactuated robotic hand with 15 Dofs and a single actuator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 19鈥?3. Pasadena (2008)
    46. Birglen, L., Lalibert茅, T., Gosselin, C.: Design and control of the Laval underactuated hands. In: Underactuated Robotic Hands. Springer Tracts in Advanced Robotics, vol. 40, pp. 171鈥?07. Berlin Heidelberg, Springer (2008)
    47. Birglen, L, Lalibert茅, T, Gosselin, C (2008) Grasping vs. manipulating. In: Underactuated Robotic Hands, vol. 40, pp. 7鈥?1. Springer Berlin, Heidelberg, Berlin CrossRef
    48. Buchholz, B, Armstrong, TJ, Goldstein, SA (1992) Anthropometric data for describing the kinematics of the human hand. Ergonomics 35: pp. 261-273 CrossRef
    49. G贸mez, G, Hernandez, A, Hotz, PE (2006) An adaptive neural controller for a tendon driven robotic hand. In: Arai, T. (ed.) 9th International Conference on Intelligent Autonomous Systems (IAS), pp. 298-307. Tokyo, IOS Press
    50. Palm, W.: Rapid prototyping primer. In: vol. 2/4/2010. Penn State Learning Factory (1998)
    51. Martin, T.B., Ambrose, R.O., Diftler, M.A., Platt, R. Jr., Butzer, M.J.: Tactile gloves for autonomous grasping with the NASA/DARPA Robonaut. In: 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 1712, pp. 1713鈥?718. New Orleans
    52. Evanczuk, S.: Fundamentals of temperature-sensing devices (2011)
    53. Mohd Jani, J, Leary, M, Subic, A, Gibson, MA (2014) A review of shape memory alloy research, applications and opportunities. Mater. Des. 56: pp. 1078-1113 CrossRef
    54. In: Smith, D.G., Michael, J.W., Bowker, J.H. (eds.) : Atlas of Amputations and Limb Deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons (2004)
    55. In: Muzumdar, A. (ed.) : Powered Upper Limb Prostheses: Control, Implementation and Clinical Application, 1st edn. Springer, New York (2004)
    56. Madden, JDW, Vandesteeg, NA, Anquetil, PA, Madden, PGA, Takshi, A, Pytel, RZ, Lafontaine, SR, Wieringa, PA, Hunter, IW (2004) Artificial muscle technology: Physical principles and naval prospects. IEEE J. Ocean. Eng. 29: pp. 706-728 CrossRef
    57. Uustal, H, Baerga, E (2004) Prosthetics and orthotics. In: Cuccurullo, S.J. (ed.) Physical Medicine and Rehabilitation Board Review. Demos Medical Publishing, New York
    58. Dynalloy, Inc.: Technical Characteristics of Flexinol Actuator Wires (2010)
    59. Abolfathi, P.P.: Development of an Instrumented and Powered Exoskeleton for the Rehabilitation of the Hand, Thesis, University of Sydney (2007)
    60. MacGregor, R.: Shape memory alloy actuators and control methods. US Patent 6,574,958 (2003)
    61. Belter, J.T., Dollar, A.M.: Performance characteristics of anthropomorphic prosthetic hands. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), ETH Zurich, pp. 921鈥?27. Switzerland (2011)
    62. Teh, YH, Featherstone, R (2008) An architecture for fast and accurate control of shape memory alloy actuators. Int. J. Robot. Res. 27: pp. 595-611 CrossRef
    63. Ma, N, Song, G, Lee, H-J (2004) Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mater. Struct. 13: pp. 777-783 CrossRef
    64. Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., Thakor, N.V.: A brain-computer interface with vibrotactile biofeedback for haptic information. J. NeuroEngineering Rehabil. 4(40) (2007)
    65. Davalli, A, Sacchetti, R, Fanin, S, Avanzolini, G, Urbano, E (2000) Biofeedback for upper limb myoelectric prostheses. Technol. Disabil. 13: pp. 161-172
    66. Engeberg, ED, Meek, S (2012) Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthetics Orthot. Int. 36: pp. 423-429 CrossRef
    67. Sapsanis, C., Georgoulas, G., Tzes, A., Lymberopoulos, D.: Improving EMG based Classification of basic hand movements using EMD. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5754鈥?757. Osaka
    68. Lake, C, Dodson, R (2006) Progressive upper limb pros- thetics. Phys. Med. Rehabil. Clinics N. Am. 17: pp. 49-72 CrossRef
    69. Cocaud, C, Price, A, Jnifene, A, Naguib, H (2006) Position control of an experimental robotic arm driven by artificial muscles based on shape memory alloys. Int. J. Mech. Mater. Des. 3: pp. 223-236 CrossRef
    70. Ashrafiuon, H, Eshraghi, M, Elahinia, MH (2006) Position control of a three-link shape memory alloy actuated robot. J. Intell. Mater. Syst. Struct. 17: pp. 381-392 CrossRef
    71. Rezaeeian, A., Yousefi-Koma, A., Shasti, B., Doosthoseini, A.: ANFIS modeling and feedforward control of shape memory alloy actuators, Vol. 2 (2008)
    72. Cho, K-J, Asada, H (2006) Architecture design of a multi-axis cellular actuator array using segmented binary control of shape memory alloy. IEEE Trans. Robot. 22: pp. 831-843 CrossRef
    73. Zecca, M., Roccella, S., Cappiello, G., Ito, K., Imanishi, K., Miwa, H., Carrozza, M.C., Dario, P., Takanishi, A.: From the human hand to a humanoid hand: Biologically-inspired approach for the development of Robocasa Hand #1. In: Zielinska, T., Zielinski, C. (eds.) 16th CISM-IFToMM RoManSy Symposium, pp. 287鈥?94. Warsaw, Springer
    74. Pikul, JH, Gang Zhang, H, Cho, J, Braun, PV, King, WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4: pp. 1732 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
In this research paper, non-conventional actuation technology, based on shape memory alloys, is employed for the development of an innovative low-cost five-fingered prosthetic hand. By exploiting the unique properties of these alloys, a compact, silent and modular actuation system is implemented and integrated in a lightweight and anthropomorphic rapid-prototyped hand chassis. A tendon-driven underactuated mechanism provides the necessary dexterity while keeping the mechanical and control complexity of the device low. Tactile sensors are integrated in the fingertips improving the overall hand control. Embedded custom-made electronics for hand interfacing and control are also presented and analyzed. For the position control of each digit, a novel resistance feedback control scheme is devised and implemented. The functionality and performance of the developed hand is demonstrated in grasp experiments with common objects.When compared to the current most advanced commercial devices, the technology applied in this prototype provides a series of improvements in terms of size, weight, and noise, which will enable upper limb amputees to carry out their basic daily tasks more comfortably.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700