Contribution of electrical parameters on the dynamical behaviour of a nonlinear electromagnetic damper
详细信息    查看全文
  • 作者:Bento R. Pontes Jr. (1)
    Marcos Silveira (1)
    Adriano C. Mazotti (1)
    Paulo J. P. Gon莽alves (1)
    Jos茅 M. Balthazar (1)

    1. Department of Mechanical Engineering
    ; S茫o Paulo State University - UNESP ; Bauru ; SP ; 17033-360 ; Brazil
  • 关键词:Electromechanical absorber ; Duffing ; type stiffness ; Nonlinear vibrations ; Chaotic behaviour
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:79
  • 期:3
  • 页码:1957-1969
  • 全文大小:3,578 KB
  • 参考文献:1. Sodano, H.A., Inman, D.J., Park, G.: Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intell. Mater. Syst. Struct. (2005). doi:10.1177/1045389X05056681
    2. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311鈥?325 (2008) CrossRef
    3. Brasil, R.M.L.R.F., Feitosa, L.C.S., Balthazar, J.M.: A nonlinear and non-Ideal wind generator supporting structure. Appl. Mech. Mater. 5鈥?, 433鈥?42 (2006) CrossRef
    4. Munteanu, L., Chiroiu, V., Sireteanu, T.: On the response of small buildings to vibrations. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0883-y
    5. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 80, 1377鈥?388 (2012) CrossRef
    6. Mendrela, E.A., Pudlowski, Z.J.: Transients and dynamics in a linear reluctance self-oscillating motor. Energy Convers. IEEE Trans. (1992). doi:10.1109/60.124559
    7. Mendrela, E.A.: Comparison of the performance of a linear reluctance oscillating motor operating under AC supply with one under DC supply. Energy Convers. IEEE Trans. (1999). doi:10.1109/60.790878
    8. Wauer, J., B眉hrle, P.: Dynamics of a flexible slider-crank mechanism driven by a non-ideal source of energy. Nonlinear Dyn. 13, 221鈥?42 (1997) CrossRef
    9. T茅kam, G.T.O., Tchuisseu, E.B.T., Kwuimy, C.A.K., Woafo, P.: Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn. (2014). doi:10.1007/s11071-013-1228-6
    10. Siewe, M.S., Buckjohn, C.N.D.: Heteroclinic motion and energy transfer in coupled oscillator with nonlinear magnetic coupling. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1294-4
    11. Moon, F.C., Holmes, P.I.: A magnetoelastic strange attractor. J. Sound Vib. 65, 275鈥?96 (1979) CrossRef
    12. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. (2009). doi:10.1007/s11071-008-9340-8
    13. Ho, J.H., Nguyen, V.D., Woo, K.C.: Nonlinear dynamics of a new electro-vibro-impact system. Nonlinear Dyn. (2011). doi:10.1007/s11071-010-9783-6
    14. Ho, J.H., Woo, K.C.: Approximate analytical solution to oscillations of a conductor in a magnetic field. Nonlinear Dyn. (2011). doi:10.1007/s11071-010-9863-7
    15. Sinclair, I.R.: Sensors and Tranducers. Newnes, Oxford (2001)
    16. Yamapi, R.: Dynamics of an electromechanical damping device with magnetic coupling. Commun. Nonlinear Sci. Numer. Simul. 8, 907鈥?21 (2006) CrossRef
    17. Preumont, A.: Mechatronics: Dynamics of Electromechanical and Piezoelectrics Systems. Springer, Dordrecht (2006)
    18. Silveira, M., Pontes Jr, B.R., Balthazar, J.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. (2014). doi:10.1016/j.jsv.2013.12.001
    19. Tusset, A.M., Balthazar, J.M.: On the chaotic suppression of both ideal and non-ideal duffing based vibrating systems, using a magnetorheological damper. Differ. Equ. Dyn. Syst. 21, 105鈥?21 (2013)
    20. Virgin, L.: Introduction to Experimental Nonlinear Dynamics. Cambridge University Press, Cambridge (2000)
    21. Kovacic, I., Brennan, M.J.: The Duffing Equation. Wiley, New York (2011) CrossRef
    22. Meirovitch, L.: Methods of Analytical Dynamics. Dover, New York (2010)
    23. Lide, D.R.: CRC Handbook of Chemistry and Physics. Crc Press/Taylor and Francis, Boca Raton (2009)
    24. Rao, S.S.: Mechanical Vibrations. Prentice Hall, Englewood Cliffs (2010)
    25. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
This study explores the dynamical behaviour of electromechanical systems used as vibration absorber. A nonlinear system is considered, with the nonlinearity coming from Duffing-type stiffness. The mathematical modelling uses a Lagrangian approach, both for the mechanical components and the electromagnetic components of a RLC circuit. The coupling of the mechanical and electromagnetic subsystems is accomplished by a moving coil, permanent magnet transducer. The models were motivated by suspension systems used in automotive industry, resulting in a simplified model of a quarter-car suspension system. The influence of the parameters on the RLC circuit was investigated, and it was observed that they are highly responsible for the behaviour of the resulting mechanical damping effect. The correlation of the mechanical damping with the electrical resistance and capacitance was performed, and stability analysis was performed based on eigenvalues and root locus of a simplified linear system. The dynamical behaviour of the nonlinear model was observed for varying levels of capacitance, at four values of the excitation frequency. The results show that the system has a wide range of dynamical responses, and indicates that the capacitance of the electrical subsystem can be used as a control parameter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700