A Global Foliation of Einstein–Euler Spacetimes with Gowdy-Symmetry on T3
详细信息    查看全文
  • 作者:1. Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique ; Université Pierre et Marie Curie (Paris 6) ; 4 Place Jussieu ; 75252 Paris ; France2. Max-Planck-Institut für Gravitationsphysik ; Albert-Einstein Institut ; Am Mühlenberg 1 ; 14476 Potsdam ; Germany
  • 刊名:Archive for Rational Mechanics and Analysis
  • 出版年:2011
  • 出版时间:September 2011
  • 年:2011
  • 卷:201
  • 期:3
  • 页码:841-870
  • 全文大小:304.9 KB
  • 参考文献:1. Andréasson H.: Global foliations of matter spacetimes with Gowdy symmetry. Commun. Math. Phys. 206, 337–366 (1999)
    2. Andréasson H., Rendall A.D., Weaver M.: Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter. Commun. Partial Differ. Equ. 29, 237–262 (2004)
    3. Barnes A.P., LeFloch P.G., Schmidt B.G., Stewart J.M.: The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes. Class. Quantum Grav. 21, 5043–5074 (2004)
    4. Berger B.K., Chru?ciel P.T., Isenberg J., Moncrief V.: Global foliations of vacuum spacetimes with T 2 isometry. Ann. Phys. 260, 117–148 (1997)
    5. Berger B.K., Chru?ciel P.T., Moncrief V.: On asymptotically flat spacetimes with G 2-invariant Cauchy surfaces. Ann. Phys. 237, 322–354 (1995)
    6. Christodoulou D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1992)
    7. Chru?ciel P.T.: On spacetimes with U(1)×U(1) symmetric compact Cauchy surfaces. Ann. Phys. 202, 100–150 (1990)
    8. Chru?ciel P.T., Isenberg J., Moncrief V.: Strong cosmic censorship in polarized Gowdy spacetimes. Class. Quantum Grav. 7, 1671–1680 (1990)
    9. Dafermos C.M. (2010) Hyperbolic Conservation Laws in Continuum Physics. Grundlehren Math. Wissenschaften Series 325, 3rd edn. Springer, New York
    10. Dafermos M., Rendall A.D.: Strong cosmic censorship for T 2-symmetric cosmological spacetimes with collisionless matter. Preprint. arXiv:gr-qc/0610075
    11. Eardley D., Moncrief V.: The global existence problem and cosmic censorship in general relativity. Gen. Relat. Grav. 13, 887–892 (1981)
    12. Geroch R.: A method for generating solutions of Einstein’s equations. J. Math. Phys. 12, 918–924 (1971)
    13. Geroch R.: A method for generating new solutions of Einstein’s equations. II. J. Math. Phys. 13, 394–404 (1972)
    14. Gowdy R.: Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. 83, 203–241 (1974)
    15. Groah J., Temple B.: Shock-wave solutions of the Einstein equations: existence and consistency by a locally inertial Glimm scheme. Mem. Am. Math. Soc. 172 (813) (2004)
    16. Hawking S.W., Penrose R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. A 314, 529–548 (1970)
    17. Isenberg J., Moncrief V.: Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes. Ann. Phys. 99, 84–122 (1990)
    18. Isenberg J., Weaver M.: On the area of the symmetry orbits in T 2 symmetric spacetimes. Class. Quantum Grav. 20, 3783–3796 (2003)
    19. LeFloch P.G.: Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves. In: Lectures in Mathematics. ETH Zürich, Birkh?user, 2002
    20. LeFloch P.G.: Compressible fluids in curved spacetimes. In preparation
    21. LeFloch P.G., Mardare C.: Definition and weak stability of spacetimes with distributional curvature. Port. Math. 64, 535–573 (2007)
    22. LeFloch P.G., Stewart J.M.: Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry. Port. Math. 62, 349–370 (2005)
    23. LeFloch P.G., Stewart J.M.: The characteristic initial value problem for plane symmetric spacetimes with weak regularity. Class. Quantum Grav. (2011)
    24. Moncrief V.: Global properties of Gowdy spacetimes with topology. Ann. Phys. 132, 87–107 (1981)
    25. Penrose R.: Gravitational collapse and spacetime singularities. Phys. Rev. Lett. 14, 57–59 (1965)
    26. Rendall A.D.: Cosmic censorship and the Vlasov equation. Class. Quantum Grav. 9, 99–104 (1992)
    27. Rendall A.D.: Crushing singularities in spacetimes with spherical, plane, and hyperbolic symmetry. Class. Quantum Grav. 12, 1517–1533 (1995)
    28. Rendall A.D.: Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry. Commun. Math. Phys. 189, 145–164 (1997)
    29. Rendall A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)
    30. Rendall A.D., St?hl F.: Shock waves in plane symmetric spacetimes. Commun. Partial Differ. Equ. 33, 2020–2039 (2008)
    31. Ringstr?m H.: Curvature blow-up on a dense subset of the singularity in T 3-Gowdy. J. Hyper. Differ. Equ. 2, 547–564 (2005)
    32. Ringstr?m H.: Strong cosmic censorship in T 3-Gowdy spacetimes. Ann. Math. 170, 1181–1240 (2009)
    33. Smulevici J.: Strong cosmic censorship for T 2-symmetric spacetimes with positive cosmological constant and matter. Ann. Henri Poincaré 9, 1425–1453 (2009)
    34. Wainwright J., Ellis G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)
    35. Weaver M.: On the area of the symmetry orbits in T 2-symmetric spacetimes with Vlasov matter. Class. Quantum Grav. 21, 1079–1098 (2004)
  • 作者单位:http://www.springerlink.com/content/d12012807531274w/
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Electromagnetism, Optics and Lasers
    Mathematical and Computational Physics
    Complexity
    Fluids
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0673
文摘
We investigate the initial value problem for the Einstein–Euler equations of general relativity under the assumption of Gowdy symmetry on T 3, and we construct matter spacetimes with low regularity. These spacetimes admit both impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (that is, discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development, and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein–Euler equations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700