Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)
详细信息    查看全文
  • 作者:Jinyi Liu (30)
    Nana Chen (30)
    Fei Chen (30)
    Bin Cai (30)
    Silvia Dal Santo (31)
    Giovanni Battista Tornielli (31)
    Mario Pezzotti (31)
    Zong-Ming (Max) Cheng (30) (32)

    30. College of Horticulture
    ; Nanjing Agricultural University ; 210095 ; Nanjing ; Jiangsu ; China
    31. Dipartimento di Biotecnologie
    ; Universit脿 degli Studi di Verona ; 37134 ; Verona ; Italy
    32. Department of Plant Sciences
    ; University of Tennessee ; 37996 ; Knoxville ; TN ; USA
  • 关键词:bZIP transcription factor family ; Grapevine ; Gene expression ; Drought response ; Heat stress response
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,456 KB
  • 参考文献:1. Perez-Rodriguez, P, Riano-Pachon, DM, Correa, LG, Rensing, SA, Kersten, B, Mueller-Roeber, B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38: pp. D822-D827 CrossRef
    2. Nijhawan, A, Jain, M, Tyagi, AK, Khurana, JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146: pp. 333-350 CrossRef
    3. Lee, SC, Choi, HW, Hwang, IS, du Choi, S, Hwang, BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224: pp. 1209-1225 CrossRef
    4. Jakoby, M, Weisshaar, B, Droge-Laser, W, Vicente-Carbajosa, J, Tiedemann, J, Kroj, T, Parcy, F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7: pp. 106-111 CrossRef
    5. Furihata, T, Maruyama, K, Fujita, Y, Umezawa, T, Yoshida, R, Shinozaki, K, Yamaguchi-Shinozaki, K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103: pp. 1988-1993 CrossRef
    6. Liao, Y, Zou, HF, Wei, W, Hao, YJ, Tian, AG, Huang, J, Liu, YF, Zhang, JS, Chen, SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: pp. 225-240 CrossRef
    7. Wang, J, Zhou, J, Zhang, B, Vanitha, J, Ramachandran, S, Jiang, SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53: pp. 212-231 CrossRef
    8. Wei, K, Chen, J, Wang, Y, Chen, Y, Chen, S, Lin, Y, Pan, S, Zhong, X, Xie, D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19: pp. 463-476 CrossRef
    9. Toh, S, McCourt, P, Tsuchiya, Y (2012) HY5 is involved in strigolactone-dependent seed germination in Arabidopsis. Plant Signal Behav 7: pp. 556-558 CrossRef
    10. Izawa, T, Foster, R, Nakajima, M, Shimamoto, K, Chua, NH (1994) The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6: pp. 1277-1287 CrossRef
    11. Chuang, CF, Running, MP, Williams, RW, Meyerowitz, EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13: pp. 334-344 CrossRef
    12. Walsh, J, Freeling, M (1999) The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J 19: pp. 489-495 CrossRef
    13. Strathmann, A, Kuhlmann, M, Heinekamp, T, Droge-Laser, W (2001) BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J 28: pp. 397-408 CrossRef
    14. Abe, M, Kobayashi, Y, Yamamoto, S, Daimon, Y, Yamaguchi, A, Ikeda, Y, Ichinoki, H, Notaguchi, M, Goto, K, Araki, T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: pp. 1052-1056 CrossRef
    15. Wigge, PA, Kim, MC, Jaeger, KE, Busch, W, Schmid, M, Lohmann, JU, Weigel, D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: pp. 1056-1059 CrossRef
    16. Muszynski, MG, Dam, T, Li, B, Shirbroun, DM, Hou, Z, Bruggemann, E, Archibald, R, Ananiev, EV, Danilevskaya, ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol 142: pp. 1523-1536 CrossRef
    17. Iven, T, Strathmann, A, Bottner, S, Zwafink, T, Heinekamp, T, Guivarc鈥檋, A, Roitsch, T, Droge-Laser, W (2010) Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J 63: pp. 155-166
    18. Gibalova, A, Renak, D, Matczuk, K, Dupl鈥檃kova, N, Chab, D, Twell, D, Honys, D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70: pp. 581-601 CrossRef
    19. Yin, Y, Zhu, Q, Dai, S, Lamb, C, Beachy, RN (1997) RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J 16: pp. 5247-5259 CrossRef
    20. Guan, Y, Ren, H, Xie, H, Ma, Z, Chen, F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60: pp. 207-217 CrossRef
    21. Shiota, H, Ko, S, Wada, S, Otsu, CT, Tanaka, I, Kamada, H (2008) A carrot G-box binding factor-type basic region/leucine zipper factor DcBZ1 is involved in abscisic acid signal transduction in somatic embryogenesis. Plant Physiol Biochem 46: pp. 550-558 CrossRef
    22. Holm, M, Ma, LG, Qu, LJ, Deng, XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16: pp. 1247-1259 CrossRef
    23. Huang, X, Ouyang, X, Yang, P, Lau, OS, Li, G, Li, J, Chen, H, Deng, XW (2012) Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 24: pp. 4590-4606 CrossRef
    24. Chen, H, Chen, W, Zhou, J, He, H, Chen, L, Deng, XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193鈥?94: pp. 8-17 CrossRef
    25. Yoshida, T, Fujita, Y, Sayama, H, Kidokoro, S, Maruyama, K, Mizoi, J, Shinozaki, K, Yamaguchi-Shinozaki, K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61: pp. 672-685 CrossRef
    26. Hsieh, TH, Li, CW, Su, RC, Cheng, CP, Sanjaya, YC, Tsai, , Chan, MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231: pp. 1459-1473 CrossRef
    27. Liu, GT, Wang, JF, Cramer, G, Dai, ZW, Duan, W, Xu, HG, Wu, BH, Fan, PG, Wang, LJ, Li, SH (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12: pp. 174 CrossRef
    28. Shimizu, H, Sato, K, Berberich, T, Miyazaki, A, Ozaki, R, Imai, R, Kusano, T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46: pp. 1623-1634 CrossRef
    29. Liu, C, Wu, Y, Wang, X (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235: pp. 1157-1169 CrossRef
    30. Thurow, C, Schiermeyer, A, Krawczyk, S, Butterbrodt, T, Nickolov, K, Gatz, C (2005) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. Plant J 44: pp. 100-113 CrossRef
    31. Lopez-Molina, L, Mongrand, S, McLachlin, DT, Chait, BT, Chua, NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32: pp. 317-328 CrossRef
    32. Choi, H, Hong, J, Ha, J, Kang, J, Kim, SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275: pp. 1723-1730 CrossRef
    33. Li, Z, Zhang, L, Yu, Y, Quan, R, Zhang, Z, Zhang, H, Huang, R (2011) The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 68: pp. 88-99 CrossRef
    34. Zander, M, Chen, S, Imkampe, J, Thurow, C, Gatz, C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5: pp. 831-840 CrossRef
    35. Jaillon, O, Aury, JM, Noel, B, Policriti, A, Clepet, C, Casagrande, A, Choisne, N, Aubourg, S, Vitulo, N, Jubin, C, Vezzi, A, Legeai, F, Hugueney, P, Dasilva, C, Horner, D, Mica, E, Jublot, D, Poulain, J, Bruy猫re, C, Billault, A, Segurens, B, Gouyvenoux, M, Ugarte, E, Cattonaro, F, Anthouard, V, Vico, V, Del Fabbro, C, Alaux, M, Di Gaspero, G, Dumas, V (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: pp. 463-467 CrossRef
    36. Malacarne, G, Perazzolli, M, Cestaro, A, Sterck, L, Fontana, P, Van de Peer, Y, Viola, R, Velasco, R, Salamini, F (2012) Deconstruction of the (paleo)polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 7: pp. e29762 CrossRef
    37. Tak, H, Mhatre, M (2013) Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250: pp. 333-345 CrossRef
    38. Boneh, U, Biton, I, Schwartz, A, Ben-Ari, G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187: pp. 89-96 CrossRef
    39. Nicolas, P, Lecourieux, D, Kappel, C, Cluzet, S, Cramer, G, Delrot, S, Lecourieux, F (2014) The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant physiol 164: pp. 365-383 CrossRef
    40. Guillaumie, S, Fouquet, R, Kappel, C, Camps, C, Terrier, N, Moncomble, D, Dunlevy, JD, Davies, C, Boss, PK, Delrot, S (2011) Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 11: pp. 165 CrossRef
    41. Cramer, GR, Ergul, A, Grimplet, J, Tillett, RL, Tattersall, EA, Bohlman, MC, Vincent, D, Sonderegger, J, Evans, J, Osborne, C, Quilici, D, Schlauch, KA, Schooley, DA, Cushman, JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7: pp. 111-134 CrossRef
    42. Jansen, RK, Kaittanis, C, Saski, C, Lee, SB, Tomkins, J, Alverson, AJ, Daniell, H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6: pp. 32 CrossRef
    43. Boudet, N, Aubourg, S, Toffano-Nioche, C, Kreis, M, Lecharny, A (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 11: pp. 2101-2114 CrossRef
    44. Wang, N, Zheng, Y, Xin, H, Fang, L, Li, S (2013) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep 32: pp. 61-75 CrossRef
    45. Suckow, M, von Wilcken-Bergmann, B, Muller-Hill, B (1993) Identification of three residues in the basic regions of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J 12: pp. 1193-1200
    46. Fujita, Y, Yoshida, T, Yamaguchi-Shinozaki, K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147: pp. 15-27 CrossRef
    47. Finkelstein, RR, Lynch, TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: pp. 599-609 CrossRef
    48. Ji, L, Wang, J, Ye, M, Li, Y, Guo, B, Chen, Z, Li, H, An, X (2013) Identification and characterization of the Populus AREB/ABF subfamily. J Integr Plant Biol 55: pp. 177-186 CrossRef
    49. Suckow, M, Schwamborn, K, Kisters-Woike, B, von Wilcken-Bergmann, B, Muller-Hill, B (1994) Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity. Nucleic Acids Res 22: pp. 4395-4404 CrossRef
    50. Fasoli, M, Dal Santo, S, Zenoni, S, Tornielli, GB, Farina, L, Zamboni, A, Porceddu, A, Venturini, L, Bicego, M, Murino, V, Ferrarini, A, Delledonne, M, Pezzotti, M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24: pp. 3489-3505 CrossRef
    51. Bensmihen, S, Giraudat, J, Parcy, F (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56: pp. 597-603 CrossRef
    52. Yamamoto, A, Kagaya, Y, Toyoshima, R, Kagaya, M, Takeda, S, Hattori, T (2009) Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J 58: pp. 843-856 CrossRef
    53. Kesarwani, M, Yoo, J, Dong, X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144: pp. 336-346 CrossRef
    54. Onate, L, Vicente-Carbajosa, J, Lara, P, Diaz, I, Carbonero, P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274: pp. 9175-9182 CrossRef
    55. Correa, LG, Riano-Pachon, DM, Schrago, CG, dos Santos, RV, Mueller-Roeber, B, Vincentz, M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3: pp. e2944 CrossRef
    56. Chen, F, Fasoli, M, Tornielli, GB, Dal Santo, S, Pezzotti, M, Zhang, L, Cai, B, Cheng, ZM (2013) The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family. PLoS One 8: pp. e80818 CrossRef
    57. Jiao, Y, Wickett, NJ, Ayyampalayam, S, Chanderbali, AS, Landherr, L, Ralph, PE, Tomsho, LP, Hu, Y, Liang, H, Soltis, PS, Soltis, DE, Clifton, SW, Schlarbaum, SE, Schuster, SC, Ma, H, Leebens-Mack, J, dePamphilis, CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: pp. 97-100 CrossRef
    58. Eddy, SR (1998) Profile hidden Markov models. Bioinformatics 14: pp. 755-763 CrossRef
    59. Letunic, I, Doerks, T, Bork, P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40: pp. D302-D305 CrossRef
    60. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: pp. 4876-4882 CrossRef
    61. Guo, AY, Zhu, QH, Chen, X, Luo, JC (2007) GSDS: a gene structure display server. Yi Chuan 29: pp. 1023-1026 CrossRef
    62. Mar, JC, Wells, CA, Quackenbush, J (2011) Defining an informativeness metric for clustering gene expression data. Bioinformatics 27: pp. 1094-1100 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700