Pseudoknots Prediction on RNA Secondary Structure Using Term Rewriting
详细信息    查看全文
  • 作者:Linkon Chowdhury (20)
    Mohammad Ibrahim Khan (20)

    20. Department of Computer Science and Engineering
    ; Chittagong University of Engineering and Technology ; Cuet Road ; Zip Code-4349 ; Bangladesh
  • 关键词:Pseudoknot ; Structure Rewriting (SR) ; Dot Bracket ; Bloom Filter ; Hashing Table
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:9043
  • 期:1
  • 页码:577-588
  • 全文大小:699 KB
  • 参考文献:1. Batey, R.T., Rambo, R.P., Doudna, J. (1999) Tertiary Motifs in RNA Structure and Folding. Angew. Chem. Int. Ed. Engl. 38: pp. 2326-2343 CrossRef
    2. He, S., Liu, C., Skogerbo, G., Zhao, H., Wang, J., Liu, T., Bai, B., Zhao, Y., Chen, R.: Noncode v2.0: Decoding the Non-Coding. Nucleic Acids Research 36(Database), D170鈥揇172 (2007)
    3. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R. (2003) Rfam: An RNA Family Database. Nucleic Acids Research 31: pp. 439-441 CrossRef
    4. Le, S.Y., Chen, J.H., Maizel, J. (1990) Structure and Methods: Human Genome Initiative and DNA Recombination. Chapter Efficient Searches for Unusual Folding Regions in RNA Sequences 1: pp. 127-130
    5. Rivas, E., Eddy, S. (2000) Secondary Structure Alone is Generally Not Statisti-cally Significant for the Detection of Noncoding RNAs. Bioinformatics 16: pp. 583-605 CrossRef
    6. Thomas, K.F., Wong, Y.S., Chiu, T.W., Lam, S.M. (2012) Memory Efficient Algorithms for Structural Alignment of RNAs with Pseudoknots. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9: pp. 161-168 CrossRef
    7. Hofacker, I.L., Bernhart, S.H.F., Stadler, P.F. (2004) Alignment of RNA base pairing probability matrices. Bioinformatics 20: pp. 2222-2227 CrossRef
    8. Lee, D., Han, K. (2003) Prediction of RNA Pseudoknots 鈥?Comparative Study of Genetic Algorithms. Genome Informatics 13: pp. 414-415
    9. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA Structures with Diverse Functions. PLoS Biology 3(6), e213 (2005)
    10. Pley, H.W., Flaherty, K.M., McKay, D.B.: Threedimensional structure of a hammerhead ribozyme. Nature 372, 68鈥?4 (1994)
    11. Sankoff, D. (1985) Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems. SIAM Journal on Applied Mathematics 45: pp. 810-825 CrossRef
    12. Dowell, R.D., Eddy, S.R.: Efficient pair wise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7(400) (2006)
    13. Holmes, I. (2005) Accelerated probabilistic inference of rna structure evolution. BMC Bioinformatics 6: pp. 73 CrossRef
    14. Knudsen, B., Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31: pp. 3423-3428 CrossRef
    15. Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: pp. 4673-4680 CrossRef
    16. Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F., Roskin, K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D., Miller, W. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14: pp. 708-715 CrossRef
    17. Mccaskill, S. (1990) The equilibrium partition function and base pair binding probabilities for rna secondarystructure. Biopolymers 29: pp. 1105-1119 CrossRef
    18. Torarinsson, E., Havgaard, J.H., Gorodkin, J. (2007) Multiple structural align-ment and clustering of RNA sequences. Bioinformatics 23: pp. 926-932 CrossRef
    19. Washietl, S., Hofacker, I.L., Stadler, P.F. (2005) Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. U S A 102: pp. 2454-2459 CrossRef
    20. Hochsmann, M., Voss, B., Giegerich, R. (2004) Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 1: pp. 53-62 CrossRef
    21. Touzet, H., Perriquet, O.: CARNAC:folding families of related RNAs. Nucl. Acids Res. 32(suppl. 2), W142鈥揥145 (2004)
    22. Bloom, B.: Space/time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM 13(7), 422鈥?26
    23. Eker, S.: Fast matching in combination of regular equational theories. In: Meseguer, J. (ed.) Proceedings First International Workshop on Rewriting Logic and its Applications. Electronic Notes in Theoretical Computer Science, vol. 4, pp. 90鈥?09. Elsevier (1996)
    24. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: pp. 3406-3415 CrossRef
    25. Rouzina, I., Bloomfield, V.A.: Heat Capacity Effects on the Melting of DNA.2. Analysis of Nearest-Neighbor Base Pair Effects. Biophysical Journal 77(6), 3252鈥?255 (1999)
    26. Bloom, B.H. (1970) Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13: pp. 422-426 CrossRef
    27. Tabaska, J., Cary, R., Gabow, H., Stormo, G. (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14: pp. 691-699 CrossRef
    28. Ruan, J., Stormo, G.D., Zhang, W. (2004) An Iterated loop matching approach to the prediction of RNA secondary structures with Pseudoknots. Bioinformatics 20: pp. 58-66 CrossRef
  • 作者单位:Bioinformatics and Biomedical Engineering
  • 丛书名:978-3-319-16482-3
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
The presences of Pseudoknots generate computational complexities during RNA (Ribonucleic Acid) secondary structure analysis. It is a well known NP hard problem in computational system. It is very essential to have an automated algorithm based system to predict the Pseudoknots from billions of data set. RNA plays a vital role in meditation of cellular information transfer from genes to functional proteins. Pseudoknots are seldom repeated forms that produce misleading computational cost and memory. Memory reducing under bloom filter proposes a memory efficient algorithm for prediction Pseudoknot of RNA secondary structure. RNA Pseudoknot structure prediction based on bloom filter rather than dynamic programming and context free grammar. At first, Structure Rewriting (SR) technique is used to represent secondary structure. Secondary structure is represented in dot bracket representation. Represented secondary structure is separated into two portions to reduce structural complexity. Dot bracket is placed into bloom filter for finding Pseudoknot. In bloom filter, hashing table is used to occupy the RNA based nucleotide. Our proposed algorithm experiences on 105 Pseudoknots in pseudobase and achieves accuracy 66.159% to determine structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700