Blind Suppression of Nonstationary Diffuse Acoustic Noise Based on Spatial Covariance Matrix Decomposition
详细信息    查看全文
  • 作者:Nobutaka Ito (1)
    Emmanuel Vincent (2)
    Tomohiro Nakatani (1)
    Nobutaka Ono (3) (4)
    Shoko Araki (1)
    Shigeki Sagayama (5)

    1. NTT Communication Science Laboratories
    ; NTT Corporation ; Kyoto ; Japan
    2. Inria
    ; Nancy ; France
    3. Principles of Informatics Research Division
    ; National Institute of Informatics ; Tokyo ; Japan
    4. School of Multidisciplinary Sciences
    ; The Graduate University for Advanced Studies (SOKENDAI) ; Tokyo ; Japan
    5. School of Interdisciplinary Mathematical Sciences
    ; Meiji University ; Tokyo ; Japan
  • 关键词:Noise suppression ; Diffuse noise ; Spatial covariance matrix ; Maximum likelihood estimation ; Least squares estimation
  • 刊名:The Journal of VLSI Signal Processing
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:79
  • 期:2
  • 页码:145-157
  • 全文大小:2,259 KB
  • 参考文献:1. Boll, S.F. (1979). Suppression of acoustic noise in speech using spectral subtraction. / IEEE Transactions ASSP, / 27(2), 113鈥?20. CrossRef
    2. Martin, R. (1994). Spectral subtraction based on minimum statistics. In / Proclamation EUSIPCO, (pp. 1982鈥?185).
    3. Ephraim, Y., & Malah, D. (1984). Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. / IEEE Transactions ASSP, / 32(6), 1109鈥?121. CrossRef
    4. Dudgeon, D.E., & Johnson, D.H. (1993). Array signal processing: concepts and techniques. Prentice Hall, Englewood Cliffs.
    5. Brandstein, M., & Ward, D. (2001). / Microphone arrays: signal processing techniques and applications. Berlin, Heidelberg: Springer.
    6. Itakura, F., & Saito, S. (1968). Analysis synthesis telephony based on the maximum likelihood method. / In Report of 6th International Congress on Acoustics, (pp. 17鈥?0).
    7. Duong, N.Q.K., Vincent, E., Gribonval, R. (2010). Under-determined reverberant audio source separation using a full-rank spatial covariance model. / IEEE Transactions ASLP, / 18(7), 1830鈥?840.
    8. Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., Juang, B.-H. (2010). Speech dereverberation based on variance-normalized delayed linear prediction. / IEEE Transactions ASLP, / 18(7), 1717鈥?731.
    9. Vincent, E., Bertin, N., Gribonval, R., Bimbot, F. (2014). From blind to guided audio source separation. / IEEE Signal Proclamation Magazine, / 31(3).
    10. Sawada, H., Kameoka, H., Araki, S., Ueda, N. (2013). Multichannel extensions of non-negative matrix factorization with complex-valued data. / IEEE Transactions ASLP, / 21(5), 971鈥?82.
    11. Simmer, K.U., Bitzer, J., Marro, C. (2001). Post-filtering techniques, In M. Brandstein & D. Ward (Eds.), / Microphone Arrays (pp. 39鈥?0). Berlin, Heidelberg: Springer.
    12. Doclo, S., & Moonen, M. (2002). GSVD-based optimal filtering for single and multimicrophone speech enhancement. / IEEE Transactions SP, / 50(9), 2230鈥?244. CrossRef
    13. Ito, N. (2012). / Robust microphone array signal processing against diffuse noise, Ph.D. thesis, The University of Tokyo.
    14. Ito, N., Vincent, E., Ono, N., Sagayama, S. (2013). General algorithms for estimating spectrogram and transfer functions of target signal for blind suppression of diffuse noise. In / Proceedings of the IEEE international workshop on machine learning for signal processing (MLSP).
    15. Ito, N., Shimizu, H., Ono, N., Sagayama, S. (2011). Diffuse noise suppression using crystal-shaped microphone arrays. / IEEE Transactions ASLP, / 19(7), 2101鈥?110.
    16. Zelinski, R. (1988). A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. In / Proclamation ICASSP (pp. 2578鈥?581).
    17. McCowan, I.A., & Bourlard, H. (2003). Microphone array post-filter based on noise field coherence. / IEEE Transactions SAP, / 11(6), 709鈥?16.
    18. Ito, N., Ono, N., Sagayama, S (2010). Designing the Wiener post-filter for diffuse noise suppression using imaginary parts of inter-channel cross-spectra, In / Proclamation ICASSP (pp. 2818鈥?821).
    19. Ito, N., Vincent, E., Ono, N., Gribonval, R., Sagayama, S. (2010). Crystal-MUSIC: Accurate localization of multiple sources in diffuse noise environments using crystal-shaped microphone arrays. In / Proclamation of LVA/ICA, lecture notes in computer science (Vol. , pp. 81鈥?8).
    20. Srebro, N., & Jaakkola, T. (2003). Weighted low-rank approximations. In / Proceedings of the international conference on machine learning (ICML) (pp. 720鈥?27). AAAI Press.
    21. Toh, K., & Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. / Pacific Journal of Optimization, / 6(3), 615鈥?40.
    22. Pham, D.-T., & Cardoso, J.-F. (2001). Blind separation of instantaneous mixtures of non stationary sources. / IEEE Transactions SP, / 49(9), 1837鈥?848. CrossRef
    23. Ozerov, A., & F茅votte, C. (2010). Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. / IEEE Transactions ASLP, / 18(3), 550鈥?63.
    24. Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). 鈥淢aximum likelihood from incomplete data via the EM algorithm,鈥? / Journal of the Royal Statistical Society: Series B (Methodological), / 39(1), 1鈥?8.
    25. Kurematsu, A., Takeda, K., Sagisaka, Y., Katagiri, S., Kuwabara, H., Shikano, K. (1990). ATR Japanese speech database as a tool of speech recognition and synthesis. / Speech Communications, / 9(4), 357鈥?63. CrossRef
    26. Ono, N. (2011). Stable and fast update rules for independent vector analysis based on auxiliary function technique. In / Proceedings of IEEE workshop applications of signal processing audio acoustics (WASPAA) (pp. 189鈥?92).
  • 刊物类别:Engineering
  • 刊物主题:Electrical Engineering
    Circuits and Systems
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Computer Systems Organization and Communication Networks
    Signal,Image and Speech Processing
    Mathematics of Computing
  • 出版者:Springer New York
  • ISSN:1939-8115
文摘
We propose methods for blind suppression of nonstationary diffuse noise based on decomposition of the observed spatial covariance matrix into signal and noise parts. In modeling noise to regularize the ill-posed decomposition problem, we exploit spatial invariance (isotropy) instead of temporal invariance (stationarity). The isotropy assumption is that the spatial cross-spectrum of noise is dependent on the distance between microphones and independent of the direction between them. We propose methods for spatial covariance matrix decomposition based on least squares and maximum likelihood estimation. The methods are validated on real-world data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700