Identification of linear human B-cell epitopes of tick-borne encephalitis virus
详细信息    查看全文
  • 作者:Suvi Kuivanen (1)
    Jussi Hepojoki (1)
    Sirkka Vene (4)
    Antti Vaheri (1)
    Olli Vapalahti (1) (2) (3)

    1. Department of Virology
    ; Haartman Institute ; Faculty of Medicine ; University of Helsinki ; Helsinki ; Finland
    4. The Public Health Agency of Sweden
    ; Solna ; Sweden
    2. Department of Virology and Immunology
    ; Helsinki University Central Hospital Laboratory (HUSLAB) ; Helsinki ; Finland
    3. Department of Veterinary Biosciences
    ; Faculty of Veterinary Medicine ; University of Helsinki ; Helsinki ; Finland
  • 关键词:Epitope ; Flavivirus ; Tick ; borne encephalitis virus
  • 刊名:Virology Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:1,624 KB
  • 参考文献:1. Lindquist, L, Vapalahti, O (2008) Tick-borne encephalitis. Lancet 371: pp. 1861-1871 CrossRef
    2. Holzmann, H, Aberle, SW, Stiasny, K, Werner, P, Mischak, A, Zainer, B, Netzer, M, Koppi, S, Bechter, E, Heinz, FX (2009) Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg Infect Dis 15: pp. 1671-1673 CrossRef
    3. Hudopisk, N, Korva, M, Janet, E, Simetinger, M, Grgic-Vitek, M, Gubensek, J, Natek, V, Kraigher, A, Strle, F, Avsic-Zupanc, T (2013) Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012. Emerg Infect Dis 19: pp. 806-808 CrossRef
    4. Ecker, M, Allison, SL, Meixner, T, Heinz, FX (1999) Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80: pp. 179-185
    5. Chambers, TJ, Nestorowicz, A, Amberg, SM, Rice, CM (1993) Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol 67: pp. 6797-6807
    6. Koonin, EV (1993) Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol 74: pp. 733-740 CrossRef
    7. Rice, CM, Lenches, EM, Eddy, SR, Shin, SJ, Sheets, RL, Strauss, JH (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229: pp. 726-733 CrossRef
    8. Mackenzie, JM, Khromykh, AA, Jones, MK, Westaway, EG (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245: pp. 203-215 CrossRef
    9. Mason, PW, Zugel, MU, Semproni, AR, Fournier, MJ, Mason, TL (1990) The antigenic structure of dengue type 1 virus envelope and NS1 proteins expressed in Escherichia coli. J Gen Virol 71: pp. 2107-2114 CrossRef
    10. Dejnirattisai, W, Jumnainsong, A, Onsirisakul, N, Fitton, P, Vasanawathana, S, Limpitikul, W, Puttikhunt, C, Edwards, C, Duangchinda, T, Supasa, S, Chawansuntati, K, Malasit, P, Mongkolsapaya, J, Screaton, G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328: pp. 745-748 CrossRef
    11. Cardosa, MJ, Wang, SM, Sum, MS, Tio, PH (2002) Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. BMC Microbiol 2: pp. 9 CrossRef
    12. AnandaRao, R, Swaminathan, S, Khanna, N (2005) The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides. Virus Res 112: pp. 60-68 CrossRef
    13. Rey, FA, Heinz, FX, Mandl, C, Kunz, C, Harrison, SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375: pp. 291-298 CrossRef
    14. Roehrig, JT, Bolin, RA, Kelly, RG (1998) Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus. Jamaica Virology 246: pp. 317-328 CrossRef
    15. Jaaskelainen, A, Han, X, Niedrig, M, Vaheri, A, Vapalahti, O (2003) Diagnosis of tick-borne encephalitis by a mu-capture immunoglobulin M-enzyme immunoassay based on secreted recombinant antigen produced in insect cells. J Clin Microbiol 41: pp. 4336-4342 CrossRef
    16. Levanov, L, Kuivanen, S, Matveev, A, Swaminathan, S, Hakala, AJ, Vapalahti, O (2014) Diagnostic potential and antigenic properties of recombinant tick-borne encephalitis virus subviral particles expressed in mammalian cells from Semliki Forest virus replicon. J Clin Microbiol 52: pp. 814-22 CrossRef
    17. Wong, SJ, Boyle, RH, Demarest, VL, Woodmansee, AN, Kramer, LD, Li, H, Drebot, M, Koski, RA, Fikrig, E, Martin, DA, Shi, PY (2003) Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 41: pp. 4217-4223 CrossRef
    18. Holzmann, H, Utter, G, Norrby, E, Mandl, CW, Kunz, C, Heinz, FX (1993) Assessment of the antigenic structure of tick-borne encephalitis virus by the use of synthetic peptides. J Gen Virol 74: pp. 2031-2035 CrossRef
    19. BRUMMER-KORVENKONTIO, M, SALMINEN, A, OKER-BLOM, N (1962) Hemagglutination-inhibiting antibodies to tick-borne encephalitis virus in mammals and birds. Acta Pathol Microbiol Scand Suppl 154: pp. 337-338
    20. Uzcategui, NY, Sironen, T, Golovljova, I, Jaaskelainen, AE, Valimaa, H, Lundkvist, A, Plyusnin, A, Vaheri, A, Vapalahti, O (2012) Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44聽years apart. J Gen Virol 93: pp. 786-796 CrossRef
    21. Frank, R (2002) The SPOT-synthesis technique: synthetic peptide arrays on membrane supports--principles and applications. J Immunol Methods 267: pp. 13-26 CrossRef
    22. Hepojoki, J, Strandin, T, Wang, H, Vapalahti, O, Vaheri, A, Lankinen, H (2010) Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J Gen Virol 91: pp. 2341-2350 CrossRef
    23. Hepojoki, J, Strandin, T, Vaheri, A, Lankinen, H (2010) Interactions and oligomerization of hantavirus glycoproteins. J Virol 84: pp. 227-242 CrossRef
    24. Huhtamo, E, Hasu, E, Uzcategui, NY, Erra, E, Nikkari, S, Kantele, A, Vapalahti, O, Piiparinen, H (2010) Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology. J Clin Virol 47: pp. 49-53 CrossRef
    25. / Swiss-Model. Available at http://swissmodel.expasy.org/. Accessed March 4, 2014.
    26. Arnold, K, Bordoli, L, Kopp, J, Schwede, T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: pp. 195-201 CrossRef
    27. Guex, N, Peitsch, MC (1997) SWISS-MODEL and the swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: pp. 2714-2723 CrossRef
    28. Malet, H, Egloff, MP, Selisko, B, Butcher, RE, Wright, PJ, Roberts, M, Gruez, A, Sulzenbacher, G, Vonrhein, C, Bricogne, G, Mackenzie, JM, Khromykh, AA, Davidson, AD, Canard, B (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282: pp. 10678-10689 CrossRef
    29. Schwede, T, Kopp, J, Guex, N, Peitsch, MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31: pp. 3381-3385 CrossRef
    30. Benkert, P, Biasini, M, Schwede, T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: pp. 343-350 CrossRef
    31. / YASARA. Available at http://www.yasara.org/.
  • 刊物主题:Virology;
  • 出版者:BioMed Central
  • ISSN:1743-422X
文摘
Background Tick-borne encephalitis (TBE) is a central nervous system infection transmitted to humans by ticks. The causative agent, tick-borne encephalitis virus (TBEV), belongs to the genus Flavivirus (family Flaviviridae), which includes globally important arthropod-borne viruses, such as dengue, Yellow fever, Japanese encephalitis and West Nile viruses. Flaviviruses are highly cross-reactive in serological tests that are currently based on viral envelope proteins. The envelope (E) protein is the major antigenic determinant and it is known to induce neutralizing antibody responses. Methods We synthesized the full-length TBEV proteome as overlapping synthetic 18-mer peptides to find dominant linear IgG epitopes. To distinguish natural TBEV infections from responses to TBE immunization or other flavivirus infections, the peptides were probed with sera of patients infected with TBEV, West Nile virus (WNV) or dengue virus (DENV), sera from TBE vaccinees and negative control sera by SPOT array technique. Results We identified novel linear TBEV IgG epitopes in the E protein and in the nonstructural protein 5 (NS5). Conclusions In this study, we screened TBEV structural and nonstructural proteins to find linear epitopes specific for TBEV. We found 11 such epitopes and characterized specifically two of them to be potential for differential diagnostics. This is the first report of identifying dominant linear human B-cell epitopes of the whole TBEV genome. The identified peptide epitopes have potential as antigens for diagnosing TBEV and to serologically distinguish flavivirus infections from each other.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700