Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route
详细信息    查看全文
  • 作者:Nilam Qureshi (1)
    Rajendra Patil (2)
    Manish Shinde (1)
    Govind Umarji (1)
    Valerio Causin (3)
    Wasudev Gade (2)
    Uttam Mulik (1)
    Anand Bhalerao (4)
    Dinesh P. Amalnerkar (1)

    1. Centre for Materials for Electronics Technology (C-MET)
    ; Panchwati Off Pashan Road ; Pune ; 411008 ; India
    2. Department of Biotechnology
    ; University of Pune ; Ganeshkhind Road ; Pune ; 411007 ; India
    3. Dipartimento di Scienze Chimiche
    ; Universit脿 di Padova ; via Marzolo 1 ; Padua ; 35131 ; Italy
    4. College of Engineering
    ; Bharati Vidyapeeth University ; Pune ; 411043 ; India
  • 关键词:Biofilm ; Antimicrobial ; ROS ; Molybdenum Sulfide ; Solvothermal
  • 刊名:Applied Nanoscience
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:5
  • 期:3
  • 页码:331-341
  • 全文大小:5,655 KB
  • 参考文献:1. Aebi, H (1984) Catalase in vitro. Methods Enzymol 105: pp. 121-126 CrossRef
    2. Afanasiev, P, Bezverkhy, I (2002) Synthesis of MoSx(5 > x > 6) amorphous sulfides and their use for preparation of MoS2 monodispersed microspheres. Chem Mater 14: pp. 2826-2830 CrossRef
    3. Afanasiev, P, Geantet, C, Thomazeau, C, Jouget, B (2000) Molybdenum polysulfide hollow microtubules grown at room temperature from solution. Chem Commun 12: pp. 1001-1002 CrossRef
    4. Aharon, E, Albo, A, Kalina, M, Frey, GL (2006) Stable blue emission from a polyfluorene/layered-compound guest/host nanocomposite. Adv Funct Mater 16: pp. 980-986 CrossRef
    5. Anon, National Committee for Clinical Laboratory Standards (NCCLS) (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard, 5th edn. NCCLS document, M7-A5. NCCLS, Wayne
    6. Applerot, G, Lellouche, J, Perkas, N, Nitzan, Y, Gedanken, A, Banin, E (2012) ZnO nanoparticle -coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2: pp. 2314-2321 CrossRef
    7. Bjarnsholt, T, Tolker-Nielsen, T, H酶iby, N, Givskov, M (2010) Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Rev Mol Med 12: pp. e11 CrossRef
    8. Chen, J, Kuriyama, N, Yuan, HT, Takeshita, HT, Sakai, T (2001) Electrochemical hydrogen storage in MoS2 nanotubes. J Am Chem Soc 123: pp. 11813-11814 CrossRef
    9. Chen, WJ, Tsai, PJ, Chen, YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4: pp. 485-489 CrossRef
    10. Windt, W, Boon, N, Bulcke, J, Rubberecht, L, Prata, F, Mast, J, Hennebel, T, Verstraete, W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90: pp. 377-389 CrossRef
    11. Dwyer, DJ, Kohanski, MA, Collins, JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12: pp. 482-489 CrossRef
    12. Fang, J, Lyon, DY, Wiesner, MR, Dong, J, Alvarez, PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41: pp. 2636-2642 CrossRef
    13. Foucaud, L, Wilson, MR, Brown, DM, Stone, V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174: pp. 1-9 CrossRef
    14. Giannopolitis, CN, Ries, SK (1977) Superoxide dismutases: I occurrence in higher plants. Plant Physiol 59: pp. 309-314 CrossRef
    15. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC, Kahru, A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71: pp. 1308-1316 CrossRef
    16. Hetrick, EM, Shin, JH, Paul, HS, Schoenfisch, MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30: pp. 2782-2789 CrossRef
    17. Imanishi, N, Kanamura, K, Takehara, Z (1992) Synthesis of MoS2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J Electrochem Soc 139: pp. 2082-2087 CrossRef
    18. Jones, SA, Bowler, PG, Walker, M, Parsons, D (2004) Controlling wound bioburden with a novel silver-containing hydrofiber dressing. Wound Repair Regen 12: pp. 288-294 CrossRef
    19. Kopnov, F, Leitus, G, Yoffe, A, Feldman, I, Panich, AM, Tenne, R (2006) Electric transport properties and 1H NMR study of the fullerene-like WS2 nanoparticles. Phys Stat Sol 243: pp. 3290-3296 CrossRef
    20. Li, WJ, Shi, EW, Ko, JM, Chen, ZZ, Ogino, H, Fukuda, T (2003) Hydrothermal synthesis of MoS2 nanowires. J Cryst Growth 250: pp. 418-422 CrossRef
    21. Li, Q, Li, M, Chen, ZQ, Li, CM (2004) Simple solution route to uniform MoS2 particles with randomly stacked layers. Mater Res Bull 39: pp. 981-986 CrossRef
    22. Li, Q, Walter, EC, Veer, WE, Murray, BJ, Newberg, JT, Bohannan, EW, Switzer, JA, Hemminger, JC, Penner, RM (2005) Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J Phys Chem B109: pp. 3169-3182 CrossRef
    23. Li, G, Zhai, J, Li, D, Fang, X, Jiang, H, Dong, Q, Wang, E (2010) One-pot synthesis of monodispersed ZnS nanospheres with high antibacterial activity. J Mater Chem 20: pp. 9215-9219 CrossRef
    24. Liu, SB, Wei, L, Hao, L, Fang, N, Chang, MW, Xu, R, Yang, YH, Chen, Y (2009) Sharper and faster 鈥渘ano darts鈥?kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3: pp. 3891-3902 CrossRef
    25. Lyon, DY, Fortner, JD, Sayes, CM, Colvin, VL, Hughe, JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24: pp. 2757-2762 CrossRef
    26. Maenosono, S, Suzuki, T, Saita, S (2007) Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32: pp. 575-579 CrossRef
    27. Morones, JR, Elechiguerra, JL, Camacho, A, Holt, K, Kouri, JB, Ram铆rez, JT, Yacaman, MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: pp. 2346-2353 CrossRef
    28. Nel, AE, Madler, L, Velegol, D, Xia, T, Hoek, EMV, Somasundaran, P, Klaessig, F, Castranova, V, Thompson, M (2009) Understanding biophysicochemical interactions at the nano鈥揵io interface. Nat Mater 8: pp. 543-557 CrossRef
    29. Nemani膷, V, 沤umer, M, Zajec, B, Pahor, J, Rem拧kar, M, Mrzel, A, Panjan, P, Mihailovi膷, D (2003) Field-emission properties of molybdenum disulfide nanotubes. Appl Phys Lett 82: pp. 4573-4575 CrossRef
    30. Peng, Y, Meng, Z, Zhong, C, Lu, J, Yang, Z, Qian, Y (2002) Tube- and ball-like amorphous MoS2 prepared by a solvothermal method. Mater Chem Phy 73: pp. 327-329 CrossRef
    31. Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A (2011) Single-layer MoS2 transistors. Nat Nanotech 6: pp. 147-150 CrossRef
    32. Rapoport, L, Fleischer, N, Tenne, R (2003) Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv Mater 15: pp. 651-655 CrossRef
    33. Rapoport, L, Fleischer, N, Tenne, R (2005) Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J Mater Chem 15: pp. 1782-1788 CrossRef
    34. Reddy, KM, Feris, K, Bell, J, Wingett, DG, Hanley, C, Punnoose, A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90: pp. 2139021-2139023
    35. Ruparelia, JP, Chatterjee, AK, Duttagupta, SP, Mukherji, S (2007) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4: pp. 707-716 CrossRef
    36. Shinde, MD, Chavan, PG, Umarji, GG, Arbuj, SS, Rane, SB, More, MA, Joag, DS, Amalnerkar, DP (2012) Field emission and photo-catalytic investigations on hierarchical nanostructures of copper doped CdS synthesized by 鈥榢itchen-chemistry鈥?approach. J Nanosci Nanotechnol 12: pp. 3788-3798 CrossRef
    37. Shinde, M, Patil, R, Karmakar, S, Bhoraskar, S, Rane, S, Gade, W, Amalnerkar, D (2012) Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique. J Nanosci Nanotechnol 12: pp. 887-893 CrossRef
    38. Stoimenov, PK, Klinger, RL, Marchin, GL, Klabunde, KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18: pp. 6679-6686 CrossRef
    39. Su, HL, Chou, CC, Hung, DJ, Lin, SH, Pao, IC, Lin, JH, Huang, FL, Dong, RX, Lin, JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. J Biomater 30: pp. 5979-5987 CrossRef
    40. Thomalla, M, Tributsch, H (2006) Photosensitization of nanostructured TiO2 with WS2 quantum sheets. J Phys Chem B110: pp. 12167-12171 CrossRef
    41. Tsuang, YH, Sun, JS, Huang, YC, Lu, CH, Chang, WH, Wang, CC (2008) Studies of photo killing of bacteria using titanium dioxide nanoparticles. Artif Organs 32: pp. 167-174 CrossRef
    42. Weir, E, Lawlor, A, Whelan, A, Regan, F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 13: pp. 835-845 CrossRef
    43. Wu, H, Yang, R, Song, B, Han, Q, Li, J, Zhang, Y, Fang, Y, Tenne, R, Wang, C (2011) Biocompatible inorganic fullerene- like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 5: pp. 1276-1281 CrossRef
    44. Xie, Y, He, Y, Irwin, PL, Jin, T, Shi, X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77: pp. 2325-2331 CrossRef
    45. Yamamoto, O, Sawai, J, Ishimura, N, Kojima, H, Sasamoto, T (1999) Change of antibacterial activity with oxidation of ZnS powder. J Ceram Soc Jpn 107: pp. 853-856 CrossRef
    46. Zhang, L, Jiang, Y, Ding, Y, Povey, M, York, D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9: pp. 479-489 CrossRef
    47. Zhu, X, Zhou, J, Cai, Z (2011) The toxicity and oxidative stress of TiO2 nanoparticles in marine abalone (Haliotisdiversicolor supertexta). Mar Pollut Bull 63: pp. 334-338 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Nanotechnology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2190-5517
文摘
The incessant use of antibiotics against infectious diseases has translated into a vicious circle of developing new antibiotic drug and its resistant strains in short period of time due to inherent nature of micro-organisms to alter their genes. Many researchers have been trying to formulate inorganic nanoparticles-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than antibiotics. The way-out approaches in this direction are nanomaterials based (1) bactericidal and (2) bacteriostatic activities. We, herein, present hitherto unreported observations on microbial abatement using non-cytotoxic molybdenum disulfide nanostructures (MSNs) which are synthesized using microwave assisted solvothermal route. Inhibition of biofilm formation using MSNs is a unique feature of our study. Furthermore, this study evinces antimicrobial mechanism of MSNs by reactive oxygen species (ROS) dependent generation of superoxide anion radical via disruption of cellular functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700