Pathogenic substitution of IVS15 + 5G > A in SLC26A4 in patients of Okinawa Islands with enlarged vestibular aqueduct syndrome or Pendred syndrome
详细信息    查看全文
  • 作者:Akira Ganaha (1)
    Tadashi Kaname (2)
    Kumiko Yanagi (2)
    Kenji Naritomi (2)
    Tetsuya Tono (3)
    Shin-ichi Usami (4)
    Mikio Suzuki (1)
  • 刊名:BMC Medical Genetics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:489KB
  • 参考文献:1. Downs MP: Universal newborn hearing screening–the Colorado story. / Int J Pediatr Otorhinolaryngol 1995, 32:257-59. CrossRef
    2. Mehl AL, Thomson V: Newborn hearing screening: the great omission. / Pediatrics 1998, 101:E4. CrossRef
    3. Mehl AL, Thomson V: The Colorado newborn hearing screening project, 1992-999: on the threshold of effective population-based universal newborn hearing screening. / Pediatrics 2002, 109:E7. CrossRef
    4. Bitner-Glindzicz M: Hereditary deafness and phenotyping in humans. / Br Med Bull 2002, 63:73-4. CrossRef
    5. Morton NE: Genetic epidemiogy of hearing impairment. / Ann NY Acad Sci 1991, 630:16-1. CrossRef
    6. Pendred V: Deaf-mutation and goiter. / Lancet 1896, 2:532. CrossRef
    7. Everett L, Glaser B, Beck J, Idol J, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis A, Sheffield V, Green E: Pendred syndrome is caused by mutations in a putative sulphate transporter gene ( PDS ). / Nat Genet 1997, 17:411-22. CrossRef
    8. Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, Wilcox ER: A mutation in PDS causes non-syndromic recessive deafness. / Nat Genet 1998, 18:215-17. CrossRef
    9. Johnsen T, J?rgensen MB, Johnsen S: Mondini cochlea in Pendred’s syndrome. / Acta Otolaryngol 1986, 102:239-47. CrossRef
    10. Nakagawa O, Ito S, Hanyu O, Yamazaki M, Urushiyama M: Female siblings with Pendred’s syndrome. / Int Med 1994, 33:369-72. CrossRef
    11. Reardon W, Trembath RC: Pendred syndrome - 100 years of underascertainment? / Q J Med 1997, 90:443-47. CrossRef
    12. Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, Karniski LP, Sheffield VC, Smith RJ: Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutation and possible genotype–phenotype correlations. / Hum Mutat 2001, 17:404-11. CrossRef
    13. Usami S, Abe S, Weston MD, Shinkawa H, Camp GV, Kimberling WJ: Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. / Hum Genet 1999, 104:188-92. CrossRef
    14. Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz S, Ghosh M, Kim HN, Moon SK, Abe S, Tsukamoto K, Riazuddin S, Kabra M, Erdenetungalag R, Radnaabazar J, Khan S, Pandya A, Usami S-I, Nance WE, Wilcox ER, Riazuddin S, Griffith AJ: Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: Global implications for the epidemiology of deafness. / J Med Genet 2003, 40:242-48. CrossRef
    15. Tsukamoto K, Suzuki H, Harada D, Namba A, Abe S, Usami S: Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. / Eur J Hum Genet 2003, 11:916-22. CrossRef
    16. Jinam T, Nishida N, Hirai M, Kawamura S, Oota H, Umetsu K, Kimura R, Ohashi J, Tajima A, Yamamoto T, Tanabe H, Mano S, Suto Y, Kaname T, Naritomi K, Yanagi K, Niikawa N, Omoto K, Tokunaga K, Saitou N, Japanese Archipelago Human Population Genetics Consortium: The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. / J Hum Genet 2012, 57:787-95. CrossRef
    17. Valvassori GE, Clemis JD: The large vestibular aqueduct syndrome. / Laryngoscope 1978, 88:723-28.
    18. Phelps PD: The basal turn of the cochlea. / Br J Radiol 1992, 65:370-74. CrossRef
    19. Goldfeld M, Glaser B, Nassir E, Gomori JM, Hazani E, Bishara N: CT of the ear in pendred syndrome. / Radiology 2005, 235:537-40. CrossRef
    20. Davidson HC, Harnsberger HR, Lemmerling MM, Mancuso AA, White DK, Tong KA, Dahlen RT, Shelton C: MR evaluation of vestibulocochlear anomalies associated with large endolymphatic duct and sac. / AJNR Am J Neuroradiol 1999, 20:1435-441.
    21. Fraser GR: Association of congenital deafness with goiter (Pendred’s syndrome): a study of 207 families. / Ann Hum Genet 1965, 28:201-49. CrossRef
    22. Valvassori GE: The large vestibular aqueduct and associated anomalies of the inner ear. / Otolaryngol Clin North Am 1983, 16:95-01.
    23. Jackler RK, de la Cruz A: The large vestibular aqueduct syndrome. / Laryngoscope 1989, 99:1238-243. CrossRef
    24. Levenson MJ, Parisier SC, Jacobs M, Edelstein DR: The large vestibular aqueduct syndrome in children. / Arch Otolaryngol Head Neck Surg 1989, 115:54-8. CrossRef
    25. Arcand P, Desrosiers M, Dube J, Abela A: The large vestibular aqueduct syndrome and seisorineural hearing loss in the pediatric population. / J Otolaryngol 1991, 20:247-50.
    26. Belenky WM, Madgy DN, Leider JS, Becker C, Hotaling AJ: The enlarged vestivular aqueduct syndrome (EVA syndrome). / ENT J 1993, 72:746-51.
    27. Okumura T, Takahashi H, Honjo I, Takagi A, Mitamura K: Sensorineural hearing loss in patients with large vestibular aqueduct. / Laryngoscope 1995, 105:289-94. CrossRef
    28. Stinckens C, Huygen PL, Joosten FB, Van Camp G, Otten B, Cremers CW: Fluctuant, progressive hearing loss associated with Meniere like vertigo in three patients with the Pendred syndrome. / Int J Pediatr Otorhinolaryngol 2001, 61:207-15. CrossRef
    29. Cremers CW, Admiraal RJ, Huygen PL, Bolder C, Everett LA, Joosten FB, Green ED, van Camp G, Otten BJ: Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. / Int J Pediatr Otorhinolaryngol 1998, 45:113-23. CrossRef
    30. Dossena S, Rodighiero S, Vezzoli V, Nofziger C, Salvioni E, Boccazzi M, Grabmayer E, Botta G, Meyer G, Fugazzola L, Beck-Peccoz P, Paulmichl M: Functional characterization of wildtype and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. / J Mol Endocrinol 2009, 43:93-03. CrossRef
    31. Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Beck-Peccoz P: The role of pendrin in iodide regulation. / Exp Clin Endocr Diab 2001, 109:18-2. CrossRef
    32. Scott D, Wang R, Kreman T, Sheffield V, Karniski L: The Pendred syndrome gene encodes a chloride-iodide transport protein. / Nat Genet 1999, 21:440-43. CrossRef
    33. Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, Smith RJH, Karnishki LP, Sheffield VC: Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). / Hum Mol Genet 2000, 9:1709-715. CrossRef
    34. Reardon W, Coffey R, Chowdhury T, Grossman A, Jan H, Britton K, Kendall-Taylor P, Trembath R: Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. / J Med Genet 1999, 36:595-98.
    35. Napiontek U, Borck G, Muller-Forell W, Pfarr N, Bohnert A, Keilmann A, Pohlenz J: Intrafamilial variability of the deafness and goiter phenotype in Pendred syndrome caused by a T416P mutation in the SLC26A4 gene. / J Clin Endocrinol Metab 2004, 89:5347-351. CrossRef
    36. Iwasaki S, Tsukamoto K, Usami S, Misawa K, Mizuta K, Mineta H: Association of SLC26A4 mutation with clinical features and thyroid function in deaf infants with enlarged vestibular aqueduct. / J Hum Genet 2006, 51:805-10. CrossRef
    37. Kitamura K, Takahashi K, Noguchi Y, Kuroishikawa Y, Tamagawa Y, Ishikawa K, Ichimura K, Hagiwara H: Mutations of the Pendred syndrome gene (PDS) in patients with large vestibular aqueduct. / Acta Otolaryngol 2000, 120:137-41. CrossRef
    38. Dai P, Li Q, Huang D, Yuan Y, Kang D, Miller DT, Shao H, Zhu Q, He J, Yu F, Liu X, Han B, Yuan H, Platt OS, Han D, Wu BL: SLC26A4 c.919-A > G varies among Chinese ethnic groups as a cause of hearing loss. / Genet Med 2008, 10:586-92. CrossRef
    39. Chen K, Wang X, Sun L, Jiang H: Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. / Otolaryngol Head Neck Surg 2012, 146:972-78. CrossRef
    40. Wu CC, Yeh TH, Chen PJ, Hsu CJ: Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in Taiwan, including a frequent founder mutation. / Laryngoscope 2005, 115:1060-064. CrossRef
    41. Shin JW, Lee SC, Lee HK, Park HJ: Genetic screenig of GJB2 and SLC26A4 in Korean cochlear implantees: experience of soree Ear clinic. / Clin Exp Otorhinolaryngol 2012,30(Suppl 1):10-3. CrossRef
    42. Yang JJ, Tsai CC, Hsu HM, Shiao JY, Su CC, Li SY: Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDS gene. / Hear Res 2005, 199:22-0. CrossRef
    43. Wang QJ, Zhao YL, Rao SQ, Guo YF, Yuan H, Zong L, Guan J, Xu BC, Wang DY, Han MK, Lan L, Zhai SQ, Shen Y: A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. / Clin Genet 2007, 72:245-54. CrossRef
    44. Reyes S, Wang G, Ouyang X, Han B, Du LL, Yuan HJ, Yan D, Dai P, Liu XZ: Mutation analysis of SLC26A4 in mainland Chinese patients with enlarged vestibular aqueduct. / Otolaryngol Head Neck Surg 2009, 141:502-08. CrossRef
    45. Huang S, Han D, Yuan Y, Wang G, Kang D, Zhang X, Yan X, Meng X, Dong M, Dai P: Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. / J Transl Med 2011, 30:167. CrossRef
    46. Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. / Hum Genet 1992, 90:41-4. CrossRef
    47. Larriba S, Bassas L, Gimenez J, Ramos MD, Segura A, Nunes V, Estivill X, Casals T: Testicular CFTR splice variants in patients with congenital absence of the vas deferens. / Hum Mol Genet 1998, 7:1739-744. CrossRef
    48. Betsalel OT, Rosenberg EH, Almeida LS, Kleefstra T, Schwartz CE, Valayannopoulos V, Abdul-Rahman O, Poplawski N, Vilarinho L, Wolf P, den Dunnen JT, Jakobs C, Salomons GS: Characterization of novel SLC6A8 variants with the use of splice-site analysis tools and implementation of a newly developed LOVD database. / Eur J Hum Genet 2011, 19:56-3. CrossRef
    49. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/14/56/prepub
  • 作者单位:Akira Ganaha (1)
    Tadashi Kaname (2)
    Kumiko Yanagi (2)
    Kenji Naritomi (2)
    Tetsuya Tono (3)
    Shin-ichi Usami (4)
    Mikio Suzuki (1)

    1. Department of Otorhinolaryngology-Head and Neck Surgery, University of the Ryukyus, Okinawa, Japan
    2. Department of Medical Genetics, University of the Ryukyus, Okinawa, Japan
    3. Department of Otorhinolaryngology-Head and Neck Surgery, University of Miyazaki, Miyazaki, Japan
    4. Department of Otorhinolaryngology, Shinshu University School of Medicine, Nagano, Japan
  • ISSN:1471-2350
文摘
Background Pendred syndrome (PS) and nonsyndromic hearing loss associated with enlarged vestibular aqueduct (EVA) are caused by SLC26A4 mutations. The Okinawa Islands are the southwestern-most islands of the Japanese archipelago. And ancestral differences have been reported between people from Okinawa Island and those from the main islands of Japan. To confirm the ethnic variation of the spectrum of SLC26A4 mutations, we investigated the frequencies of SLC26A4 mutations and clinical manifestations of patients with EVA or PS living in the Okinawa Islands. Methods We examined 22 patients with EVA or PS from 21 unrelated families in Okinawa Islands. The patient’s clinical history, findings of physical and otoscopic examinations, hearing test, and computed tomography (CT) scan of the temporal bones were recorded. To detect mutations, all 21 exons and the exon–intron junctions of SLC26A4 were sequenced for all subjects. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for SLC26A4 and calculations using the comparative CT (2?ΔΔCT) method were used to determine the pathogenicity associated with gene substitutions. Results SLC26A4 mutations were identified in 21 of the 22 patients. We found a compound heterozygous mutation for IVS15--G > A/H723R in nine patients (41%), a homozygous substitution of IVS15--G > A in six patients (27%), and homozygous mutation for H723R in five patients (23%). The most prevalent types of SLC26A4 alleles were IVS15--G > A and H723R, which both accounted for 15/22 (68%) of the patients. There were no significant correlations between the types of SLC26A4 mutation and clinical manifestations. Based on qRT-PCR results, expression of SLC26A4 was not identified in patients with the homozygous substitution of IVS15--G > A. Conclusions The substitution of IVS15--G > A in SLC26A4 was the most common mutation in uniquely found in patients with PS and EVA in Okinawa Islands. This suggested that the spectrum of SLC26A4 mutation differed from main islands of Japan and other East Asian countries. The substitution of IVS15--G > A leads to a loss of SLC26A expression and results in a phenotype of PS and EVA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700