A hyperbolic model for viscous Newtonian flows
详细信息    查看全文
  • 作者:Ilya Peshkov ; Evgeniy Romenski
  • 关键词:Hyperbolic equations ; Navier–Stokes equations ; Solid dynamics ; Viscous fluids ; Irreversible deformation ; Thermodynamics ; Non ; equilibrium flows
  • 刊名:Continuum Mechanics and Thermodynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:28
  • 期:1-2
  • 页码:85-104
  • 全文大小:884 KB
  • 参考文献:1.Landau L.D., Lifshitz E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Pergamon Press, New York (1966)
    2.Godunov, S.K.: Elements of mechanics of continuous media. Nauka; (1978). (in Russian)
    3.Godunov S.K., Romenskii E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer/Plenum, Boston (2003)CrossRef
    4.Frenkel J.: Kinetic Theory of Liquids. Dover, New York (1955)
    5.Leonov A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15(2), 85–98 (1976)CrossRef
    6.Leonov A.I.: On a class of constitutive equations for viscoelastic liquids. J. Non-Newton. Fluid Mech. 25(1), 1–59 (1987)CrossRef
    7.Tsinober A.: An Informal Conceptual Introduction to Turbulence. Springer, Berlin (2009)CrossRef
    8.Yakhot, V., Chen, H.A., Staroselsky, I., Qian, Y., Shock, R., Kandasamy, S., et al.: A New Approach to Modelling Strongly Non-Equilibrium, Time-Dependent Turbulent Flow. Exa internal publication. Available from: http://​www.​exa.​com/​pdf/​03_​Yakhot_​New_​Approach.​pdf (2001)
    9.Gomez H., Colominas I., Navarrina F., Paris J., Casteleiro M.: A hyperbolic theory for advection–diffusion problems: mathematical foundations and numerical modeling. Arch. Comput. Methods Eng. 17(2), 191–211 (2010)MathSciNet CrossRef
    10.Jou D., Casas-Vazquez J., Lebon G.: Extended Irreversible Thermodynamics. 4th edn. Springer, Berlin (2010)CrossRef
    11.Muller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1998)CrossRef
    12.Jordan P.M., Meyer M.R., Puri A.: Causal implications of viscous damping in compressible fluid flows. Phys. Rev. E 62(6), 7918 (2000)CrossRef
    13.Romatschke P.: New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. E 19(1), 1–53 (2010)CrossRef
    14.Huovinen P., Molnar D.: Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions. Phys. Rev. C 79(1), 014906 (2009)CrossRef
    15.Godunov, S.K.: Equations of Mathematical Physics. Nauka, Moscow (1979) (in Russian)
    16.Dubois F., Floch P.L.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 71(1), 93–122 (1988)CrossRef
    17.Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2005)CrossRef
    18.Israel W., Stewart J.M.: Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118(2), 341–372 (1979)MathSciNet CrossRef
    19.Bampi F., Morro A.: Viscous fluids with hidden variables and hyperbolic systems. Wave Motion 2(2), 153–157 (1980)MathSciNet CrossRef
    20.Geroch R.: Relativistic theories of dissipative fluids. J. Math. Phys. 36(8), 4226–4241 (1995)MathSciNet CrossRef
    21.Gomez H., Colominas I., Navarrina F., Casteleiro M.: A finite element formulation for a convection–diffusion equation based on Cattaneo’s law. Comput. Method Appl. Mech. Eng. 196(9), 1757–1766 (2007)CrossRef
    22.Nishikawa H.: A first-order system approach for diffusion equation. II: Unification of advection and diffusion. J. Comput. Phys. 229(11), 3989–4016 (2010)MathSciNet CrossRef
    23.Montecinos G.I., Muller L.O., Toro E.F.: Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. J. Comput. Phys. 266, 101–123 (2014)MathSciNet CrossRef
    24.Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)
    25.Cattaneo, C.: Sulla conduzione del calore. Atti. Semin. Mat. Fis. Univ. Modena. 3 (1948)
    26.Joseph D.D.: Fluid Dynamics of Viscoelastic Liquids. Vol. 84 of Applied Mathematical Sciences. Springer, Berlin (1990)CrossRef
    27.Balmforth N.J., Frigaard I.A., Ovarlez G.: Yielding to stress: recent developments in viscoplastic fluid mechanics. Ann. Rev. Fluid Mech. 46, 121–146 (2014)MathSciNet CrossRef
    28.Wilkins M.L.: Calculation of Elastic–Plastic Flow. California Univ. Livermore Radiation LAB, Livermore (1963)
    29.Romenskii E.I.: Hypoelastic form of equations in nonlinear elasticity theory. J. Appl. Mech. Techn. Phys. 15(2), 255–259 (1974)CrossRef
    30.Trangenstein J.A., Colella P.: A higher-order Godunov method for modelling finite deformation in elastic–plastic solids. Commun. Pure Appl. Math. XLIV, 41–100 (1991)MathSciNet CrossRef
    31.Gavrilyuk S.L., Favrie N., Saurel R.: Modelling wave dynamics of compressible elastic materials. J. Comput. Phys. 227, 2941–2969 (2008)MathSciNet CrossRef
    32.Peshkov, I., Grmela, M., Romenski, E.: Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Continuum Mech. Thermodyn. (2014). doi:10.​1007/​s00161-014-0386-1
    33.Besseling, J.F.: A thermodynamic approach to rheology. In: Parkus, H., Sedov, L.I. (eds.) Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia, pp. 16–53. Springer, Vienna (1968)
    34.Grmela, M., Ottinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620 (1997)
    35.Ottinger H.C., Grmela M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633 (1997)MathSciNet CrossRef
    36.Grmela M.: Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering. Adv. Chem. Eng. 39, 75–129 (2010)CrossRef
    37.Godunov S.K., Romenskii E.I.: Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. J. Appl. Mech. Tech. Phys. 13(6), 868–884 (1972)CrossRef
    38.Eckart C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73(4), 373–382 (1948)MathSciNet CrossRef
    39.Rubin M.B.: An elastic–viscoplastic model exhibiting continuity of solid and fluid states. Int. J. Eng. Sci. 25(9), 1175–1191 (1987)CrossRef
    40.Rubin M.B., Yarin A.L.: On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids. J. Non-Newton. Fluid Mech. 50(1), 79–88 (1993)CrossRef
    41.Godunov S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk. SSSR 139(3), 521–523 (1961)MathSciNet
    42.Romensky E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115–130 (1998)MathSciNet CrossRef
    43.Romensky, E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Toro, E.F. (ed.) Godunov Methods, pp. 745–761. Springer, Berlin (2001)
    44.Bouchbinder E., Langer J.S., Procaccia I.: Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E 75, 036107 (2007)MathSciNet CrossRef
    45.Godunov, S.K., Romenskii, E.I.: Elements of mechanics of continuous media. Nauchnaya Kniga (1998) (in Russian)
    46.Miller G.H., Colella P.: A high-order Eulerian Godunov method for elastic–plastic flow in solids. J. Comput. Phys. 167(1), 131–176 (2001)CrossRef
    47.Barton P.T., Drikakis D., Romenski E.I.: An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Method. Eng. 81(4), 453–484 (2010)MathSciNet
    48.Godunov S.K., Peshkov I.M.: Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium. Comput. Math. Math. Phys. 50(8), 1409–1426 (2010)MathSciNet CrossRef
    49.Favrie N., Gavrilyuk S.L.: Diffuse interface model for compressible fluid–compressible elastic–plastic solid interaction. J. Comput. Phys. 231, 2695–2723 (2012)MathSciNet CrossRef
    50.Barton P., Romenski E.: On computational modelling of strain-hardening material dynamics. Commun. Comput. Phys. 11(5), 1525–1546 (2012)
    51.Barton P.T., Deiterding R., Meiron D., Pullin D.: Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013)MathSciNet CrossRef
    52.Kulikovskii A.G., Pogorelov N.V., Semenov A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. CRC Press, Boca Raton (2000)
    53.Afif A.E., Grmela M.: Non-Fickian mass transport in polymers. J. Rheol. 46(3), 591–628 (2002)CrossRef
    54.Godunov S.K., Demchuk A.F., Kozin N.S., Mali V.I.: Interpolation formulas for Maxwell viscosity of certain metals as a function of shear-strain intensity and temperature. J. Appl. Mech. Tech. Phys. 15(4), 526–529 (1974)CrossRef
    55.Godunov S.K., Kozin N.S.: Shock structure in a viscoelastic medium with a nonlinear dependence of the Maxwellian viscosity on the parameters of the material. J. Appl. Mech. Tech. Phys. 15(5), 666–671 (1974)CrossRef
    56.Godunov S.K., Denisenko V.V., Kozin N.S., Kuz’mina N.K.: Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for Maxwellian viscosity. J. Appl. Mech. Tech. Phys. 16(5), 811–814 (1975)CrossRef
    57.Ndanou S., Favrie N., Gavrilyuk S.: Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form. J. Elast. 115(1), 1–25 (2014)MathSciNet CrossRef
    58.Joseph D.D., Renardy M., Saut J.C.: Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Ration. Mech. Anal. 87(3), 213–251 (1985)MathSciNet CrossRef
    59.Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)MathSciNet CrossRef
    60.Rutkevich I.M.: On the thermodynamic interpretation of the evolutionary conditions of the equations of the mechanics of finitely deformable viscoelastic media of maxwell type. J. Appl. Math. Mech. 36(2), 283–295 (1972)CrossRef
    61.Dupret F., Marchal J.M.: Loss of evolution in the flow of viscoelastic fluids. J. Non-Newton. Fluid Mech. 20, 143–171 (1986)CrossRef
    62.Trangenstein J.A., Colella P.: A higher-order Godunov method for modeling finite deformation in elastic-plastic solids. Commun. Pure Appl. Math. 44(1), 41–100 (1991)MathSciNet CrossRef
    63.Radhakrishnan, K., Hindmarsh, A.C.: Description and use of LSODE, the Livermore solver for ordinary differential equations. National Aeronautics and Space Administration (1993)
    64.MATLAB and Statistics Toolbox Release. The MathWorks, Inc., Natick, Massachusetts, United States (2012)
    65.Sadovskii V.M., Sadovskaya O.V.: On the acoustic approximation of thermomechanical description of a liquid crystal. Phys. Mesomech. 16(4), 312–318 (2013)CrossRef
    66.Shliomis, M.I.: Hydrodynamics of a liquid with intrinsic rotation. Sov. J. Exp. Theor. Phys. 24, 173–177 (1967). Available from: http://​www.​jetp.​ac.​ru/​cgi-bin/​dn/​e_​024_​01_​0173.​pdf
    67.Berezin Y.A., Trofimov V.M.: A model of non-equilibrium turbulence with an asymmetric stress. Application to the problems of thermal convection. Contin. Mech. Thermodyn. 7(4), 415–437 (1995)MathSciNet CrossRef
    68.Saurel R., Metayer O.L., Massoni J., Gavrilyuk S.: Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16(3), 209–232 (2007)CrossRef
  • 作者单位:Ilya Peshkov (1)
    Evgeniy Romenski (2) (3)

    1. IUSTI UMR 7343, CNRS, Aix Marseille Université, Marseille, France
    2. Sobolev Institute of Mathematics, Novosibirsk, Russia
    3. Novosibirsk State University, Novosibirsk, Russia
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Engineering Thermodynamics and Transport Phenomena
    Mechanics, Fluids and Thermodynamics
    Structural Materials
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0959
文摘
We discuss a pure hyperbolic alternative to the Navier–Stokes equations, which are of parabolic type. As a result of the substitution of the concept of the viscosity coefficient by a microphysics-based temporal characteristic, particle settled life (PSL) time, it becomes possible to formulate a model for viscous fluids in a form of first-order hyperbolic partial differential equations. Moreover, the concept of PSL time allows the use of the same model for flows of viscous fluids (Newtonian or non-Newtonian) as well as irreversible deformation of solids. In the theory presented, a continuum is interpreted as a system of material particles connected by bonds; the internal resistance to flow is interpreted as elastic stretching of the particle bonds; and a flow is a result of bond destructions and rearrangements of particles. Finally, we examine the model for simple shear flows, arbitrary incompressible and compressible flows of Newtonian fluids and demonstrate that Newton’s viscous law can be obtained in the framework of the developed hyperbolic theory as a steady-state limit. A basic relation between the viscosity coefficient, PSL time, and the shear sound velocity is also obtained. Keywords Hyperbolic equations Navier–Stokes equations Solid dynamics Viscous fluids Irreversible deformation Thermodynamics Non-equilibrium flows

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700