Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes
详细信息    查看全文
  • 作者:Songling Yan ; Xi Li ; Yan Xiong ; Mengmeng Wang ; Linlin Yang ; Xin Liu…
  • 关键词:Nanomaterial ; Scanning electron microscopy ; Cylic voltammetry ; Electrochemical impedance spectroscopy ; Pharmaceutical analysis ; Urine analysis
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1401-1408
  • 全文大小:580 KB
  • 参考文献:1.Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27(3):173–182. doi:10.​1080/​0738855070150362​6 CrossRef
    2.McGregor GP, Biesalski HK (2006) Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 9(6):697–703. doi:10.​1097/​01.​mco.​0000247478.​79779.​8f CrossRef
    3.Reddaiah K, Reddy MM, Raghu P, Reddy TM (2013) An electrochemical sensor based on poly (solochrome dark blue) film coated electrode for the determination of dopamine and simultaneous separation in the presence of uric acid and ascorbic acid: a voltammetric method. Colloids Surf B: Biointerfaces 106:145–150. doi:10.​1016/​j.​colsurfb.​2013.​01.​025 CrossRef
    4.Nikolaus S, Antke C, Muller HW (2009) In vivo imaging of synaptic function in the central nervous system: I. Movement disorders and dementia. Behav Brain Res 204(1):1–31. doi:10.​1016/​j.​bbr.​2009.​06.​008 CrossRef
    5.Falasca GF (2006) Metabolic diseases: gout. Clin Dermatol 24(6):498–508. doi:10.​1016/​j.​clindermatol.​2006.​07.​015 CrossRef
    6.Gagliardi ACM, Miname MH, Santos RD (2009) Uric acid: a marker of increased cardiovascular risk. Atherosclerosis 202(1):11–17. doi:10.​1016/​j.​atherosclerosis.​2008.​05.​022 CrossRef
    7.Zen J-M, Senthil Kumar A, Tsai D-M (2003) Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15(13):1073–1087. doi:10.​1002/​elan.​200390130 CrossRef
    8.Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. doi:10.​1007/​s00604-014-1308-4 CrossRef
    9.Zou HL, Li BL, Luo HQ, Li NB (2015) A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical 207, Part A:535–541. doi:10.​1016/​j.​snb.​2014.​10.​121
    10.Hassan KM, Elhaddad GM, Abdel Azzem M (2014) Simultaneous determination of ascorbic acid, uric acid and glucose using glassy carbon electrode modified by nickel nanoparticles at poly 1, 8-diaminonaphthalene in basic medium. J Electroanal Chem 728:123–129. doi:10.​1016/​j.​jelechem.​2014.​06.​007 CrossRef
    11.Shi M, Chen Z, Guo L, Liang X, Zhang J, He C, Wang B, Wu Y (2014) A multiwalled carbon nanotube/tetra-[small beta]-isoheptyloxyphthalocyanine cobalt(ii) composite with high dispersibility for electrochemical detection of ascorbic acid. J Mater Chem B 2(30):4876–4882. doi:10.​1039/​C4TB00229F CrossRef
    12.Leonardi SG, Aloisio D, Donato N, Rathi S, Ghosh K, Neri G (2014) Electrochemical sensing of ascorbic acid by a novel manganese(III) complex. Mater Lett 133:232–235. doi:10.​1016/​j.​matlet.​2014.​06.​145 CrossRef
    13.Khoshro H, Zare HR, Gorji A, Namazian M (2014) A study of the catalytic activity of symmetric and unsymmetric macrocyclic [N42−] coordinated nickel complexes for electrochemical reduction of carbon dioxide. Electrochim Acta 117:62–67. doi:10.​1016/​j.​electacta.​2013.​11.​078 CrossRef
    14.García M, Aguirre MJ, Canzi G, Kubiak CP, Ohlbaum M, Isaacs M (2014) Electro and photoelectrochemical reduction of carbon dioxide on multimetallic porphyrins/polyoxotungstate modified electrodes. Electrochim Acta 115:146–154. doi:10.​1016/​j.​electacta.​2013.​10.​142 CrossRef
    15.Jafarian M, Rashvand avei M, Gobal F, Rayati S, Mahjani M (2011) Electrocatalytic oxidation of 1-propanol and 2-propanol on electro-active films derived from NiII-(N, N′-bis(2-hydroxy, 3-methoxy benzaldehyde)-1,2-propandiimine) modified glassy carbon electrode. Electrocatalysis 2(3):163–171. doi:10.​1007/​s12678-011-0049-y CrossRef
    16.Ramaswamy N, Tylus U, Jia Q, Mukerjee S (2013) Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 135(41):15443–15449. doi:10.​1021/​ja405149m CrossRef
    17.Ciszewski A, Stepniak I (2012) Preparation, characterization and redox reactivity of glassy carbon electrode modified with organometallic complex of nickel. Electrochim Acta 76:462–467. doi:10.​1016/​j.​electacta.​2012.​05.​059 CrossRef
    18.Zheng L, J-f S (2010) Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols at Ni(II)–quercetin complex modified multi-wall carbon nanotube paste electrode. J Solid State Electrochem 14(1):43–50. doi:10.​1007/​s10008-008-0780-3 CrossRef
    19.Chauke V, Matemadombo F, Nyokong T (2010) Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges. J Hazard Mater 178(1-3):180–186. doi:10.​1016/​j.​jhazmat.​2010.​01.​061 CrossRef
    20.Bansal VK, Thankachan PP, Prasad R (2010) Catalytic and electrocatalytic wet oxidation of phenol using two new nickel(II) tetraazamacrocycle complexes under heterogeneous conditions. J Mol Catal A Chem 316(1–2):131–138. doi:10.​1016/​j.​molcata.​2009.​10.​011 CrossRef
    21.Qiu B, Lin Z, Wang J, Chen Z, Chen J, Chen G (2009) An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 78(1):76–80. doi:10.​1016/​j.​talanta.​2008.​10.​067 CrossRef
    22.Gholivand MB, Azadbakht A (2012) Fabrication of a highly sensitive glucose electrochemical sensor based on immobilization of Ni(II)–pyromellitic acid and bimetallic Au–Pt inorganic–organic hybrid nanocomposite onto carbon nanotube modified glassy carbon electrode. Electrochim Acta 76:300–311. doi:10.​1016/​j.​electacta.​2012.​05.​037 CrossRef
    23.Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. J Electroanal Chem 631(1–2):52–57. doi:10.​1016/​j.​jelechem.​2009.​03.​011 CrossRef
    24.Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662(2):105–127. doi:10.​1016/​j.​aca.​2010.​01.​009 CrossRef
    25.Kamyabi MA, Narimani O, Monfared HH (2010) Electrocatalytic oxidation of hydrazine using glassy carbon electrode modified with carbon nanotube and terpyridine manganese(II) complex. J Electroanal Chem 644(1):67–73. doi:10.​1016/​j.​jelechem.​2010.​03.​037 CrossRef
    26.Geraldo DA, Togo CA, Limson J, Nyokong T (2008) Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim Acta 53(27):8051–8057. doi:10.​1016/​j.​electacta.​2008.​05.​083 CrossRef
    27.Liu X, Li X, Xiong Y, Huang Q, Li X, Dong Y, Liu P, Zhang C (2013) A glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and multi-walled carbon nanotubes, and its use as a sensor for ascorbic acid. Microchim Acta 180(13-14):1309–1316. doi:10.​1007/​s00604-013-1058-8 CrossRef
    28.Yang L, Li X, Xiong Y, Liu X, Li X, Wang M, Yan S, Alshahrani LAM, Liu P, Zhang C (2014) The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J Electroanal Chem 731:14–19. doi:10.​1016/​j.​jelechem.​2014.​07.​036 CrossRef
    29.Alshahrani LA, Li X, Luo H, Yang L, Wang M, Yan S, Liu P, Yang Y, Li Q (2014) The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-beta-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors (Basel, Switzerland) 14(12):22274–22284. doi:10.​3390/​s141222274 CrossRef
    30.Chemical Society of Japan (ed) (1988) Handbook of inorganic compounds. Beijing Chemical Industry Press, Beijing
    31.Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127(44):15437–15445. doi:10.​1021/​ja052951o CrossRef
    32.Nancy TEM, Kumary VA (2014) Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 133:233–240. doi:10.​1016/​j.​electacta.​2014.​04.​027 CrossRef
    33.Liu XF, Wei SP, Chen SH, Yuan DH, Zhang W (2014) Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Appl Biochem Biotechnol 173(7):1717–1726. doi:10.​1007/​s12010-014-0959-2 CrossRef
    34.Zhang XF, Yan WF, Zhang JN, Li YY, Tang WY, Xu Q (2015) NiCo-embedded in hierarchically structured N-doped carbon nanoplates for the efficient electrochemical determination of ascorbic acid, dopamine, and uric acid. RSC Adv 5(80):65532–65539. doi:10.​1039/​C5RA10937J CrossRef
    35.Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong J (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261. doi:10.​1016/​j.​talanta.​2014.​03.​034 CrossRef
    36.Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182(7–8):1345–1352. doi:10.​1007/​s00604-015-1450-7 CrossRef
    37.Xing L, Ma Z (2015) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta. doi:10.​1007/​s00604-015-1648-8
    38.Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181(15–16):1999–2008. doi:10.​1007/​s00604-014-1293-7 CrossRef
  • 作者单位:Songling Yan (1)
    Xi Li (1)
    Yan Xiong (1)
    Mengmeng Wang (1)
    Linlin Yang (1)
    Xin Liu (1)
    Xiaoyu Li (1)
    Lina Abdullah M Alshahrani (1)
    Peng Liu (1)
    Chaocan Zhang (2)

    1. Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
    2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The authors report that a glassy carbon electrode modified with the [Ni(phen)2]2+ complex and single-walled carbon nanotubes represents a useful sensor for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The material was characterized by scanning electron microscopy, and the electrode by cyclic voltammetry and electrochemical impedance spectroscopy. The experiments showed that this electrode responds to AA, DA and UA, best at working potentials of 0.130 V, 0.334 V, 0.486 V (vs. SCE), over the wide linear ranges from 30 to 1546 μM (for AA), 1 to 780 μM (for DA), and 1 to 1407 μM (for UA). The respective detection limits are 12 μM, 1 μM and 0.76 μM at an S/N ratio of 3. The modified electrode was successfully applied to the determination of AA, DA and UA in real samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700