Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines
详细信息    查看全文
  • 作者:O. V. Morozova ; T. A. Sashina ; S. G. Fomina ; N. A. Novikova
  • 刊名:Archives of Virology
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:160
  • 期:7
  • 页码:1693-1703
  • 全文大小:5,382 KB
  • 参考文献:1.Aoki ST, Settembre EC, Trask SD et al (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 12;324(5933):1444鈥?447. doi:10.鈥?126/鈥媠cience.鈥?170481
    2.Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21(5):885鈥?97PubMed Central PubMed View Article
    3.Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15(1):29鈥?6PubMed View Article
    4.Iturriza-Gomara M, Dallman T, Banyai K et al (2009) Rotavirus surveillance in the Europe, 2005鈥?008: web-enabled reporting and real-time analysis of genotyping and epidemiological data. J Infect Dis 1(200 Suppl 1):215鈥?21. doi:10.鈥?086/鈥?05049 View Article
    5.Epifanova NV, Sashina TA, Novikova NA et al (2014) Spectrum of rotavirus genotypes circulating in Nizhny Novgorod, 2005鈥?012. Predominance of genotype G4P[8]. Med Almanac 2(32):52鈥?7 (published in Russian)
    6.Zhirakovskaia EV, Aksanova RKh, Gorbunova MG et al (2012) Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007鈥?011. Mol Gen Mikrobiol Virusol 1(4):33鈥?1 (published in Russian)
    7.Ward RL, Bernstein DI (2009) Rotarix: a rotavirus vaccine for the world. Clin Infect Dis 48(2):222-228. doi:10.鈥?086/鈥?95702
    8.Ciarlet M, Schodel F (2009) Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq. Vaccine 27(Suppl 6):72鈥?1. doi:10.鈥?016/鈥媕.鈥媣accine.鈥?009.鈥?9.鈥?07
    9.Matthijnssens J, Joelsson DB, Warakomski DJ et al (2010) Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq. Virology 403(2):111鈥?27. doi:10.鈥?016/鈥媕.鈥媣irol.鈥?010.鈥?4.鈥?04 PubMed View Article
    10.WHO (2009) Meeting of the immunization Strategic Advisory Group of Experts, April 2009鈥攃onclusions and recommendations. Wkly Epidemiol Rec 84(23):220鈥?36
    11.Soares-Weiser K, Maclehose H, Bergman H et al (2012) Vaccines for preventing rotavirus diarrhea: vaccine in use. Cochrane Database Syst Rev 11:CD008521. doi:10.鈥?002/鈥?4651858.鈥婥D008521.鈥媝ub3
    12.Ward RL (2008) Rotavirus vaccines: how they work or don鈥檛 work. Expert Rev Mol Med 12(10):e5. doi:10.鈥?017/鈥婼146239940800057鈥? View Article
    13.Ward RL (2009) Mechanisms of protection against rotavirus infection and disease. Pediatr Infect Dis J 28(3 Suppl):57鈥?9. doi:10.鈥?097/鈥婭NF.鈥?b013e3181967c16鈥?/span> View Article
    14.Hoshino Y, Jones RW, Ross J et al (2004) Rotavirus serotype G9 strains belonging to VP7 gene phylogenetic sequence lineage 1 may be more suitable for serotype G9 vaccine candidates than those belonging to lineage 2 or 3. J Virol 78(14):7795鈥?802PubMed Central PubMed View Article
    15.Ward RL, McNeal MM, Sander DS et al (1993) Immunodominance of the VP4 neutralization protein of rotavirus in protective natural infections of young children. J Virol 67(1):464鈥?68PubMed Central PubMed
    16.Franco MA, Tin C, Greenberg HB (1997) CD8+ T cells can mediate almost complete short-term and partial long-term immunity to rotavirus in mice. J Virol 71(5):4165鈥?170PubMed Central PubMed
    17.Jaimes MC, Feng N, Greenberg HB (2005) Characterization of homologous and heterologous RV-specific T-cell responses in infant and adult mice. J Virol 79(8):4568鈥?579PubMed Central PubMed View Article
    18.Honeyman MC, Stone NL, Falk BA et al (2010) Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 184(4):2204鈥?210. doi:10.鈥?049/鈥媕immunol.鈥?900709
    19.Wei J, Li J, Zhang X et al (2009) A naturally processed epitiope on rotavirus VP7 glycoprotein recognized by HLA-A2.1-restricted cytotoxic CD8+ T cells. Viral Immunol 22(3):189鈥?94. doi:10.鈥?089/鈥媣im.鈥?008.鈥?091 PubMed View Article
    20.Arista S, Giammanco GM, De Grazia S et al (2006) Heterogeneity and temporal dynamics of evolution of G1 human rotaviruses in a settled population. J Virol 80(21):10724鈥?0733. doi:10.鈥?128/鈥婮VI.鈥?0340-06 PubMed Central PubMed View Article
    21.Banyai K, Gentsch JR, Martella V et al (2009) Trends in the epidemiology of human G1P[8] rotaviruses: a Hungarian study. J Infect Dis 200(Suppl 1):222鈥?27. doi:10.鈥?086/鈥?05052
    22.McDonald SM, Matthijnssens J, McAllen JK et al (2009) Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog 5(10):e1000634. doi:10.鈥?371/鈥媕ournal.鈥媝pat.鈥?000634 PubMed Central PubMed View Article
    23.Gentsch JR, Glass RI, Woods P et al (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30(6):1365鈥?373PubMed Central PubMed
    24.Maunula L, von Bonsdorff CH (1998) Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9. J Gen Virol 79:321鈥?32PubMed
    25.Gouvea V, Glass RI, Woods P et al (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28(2):276鈥?82PubMed Central PubMed
    26.Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731鈥?739PubMed Central PubMed View Article
    27.Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605鈥?612PubMed View Article
    28.Mouna BH, Hamida-Rebai MB, Heylen E et al (2013) Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8* antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. Infect Genet Evol 18:132鈥?44. doi:10.鈥?016/鈥媕.鈥媘eegid.鈥?013.鈥?5.鈥?08 PubMed View Article
    29.Zeller M, Patton JT, Heylen E et al (2011) Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J Clin Microbiol 50(3):966鈥?76. doi:10.鈥?128/鈥婮CM.鈥?5590-11 PubMed View Article
    30.Coulson BS, Grimwood K, Hudson IL et al (1992) Role of coproantibody in clinical protection of children during reinfection with rotavirus. J Clin Microbiol 30(7):1678鈥?684PubMed Central PubMed
    31.Franco MA, Angel J, Greenberg HB (2006) Immunity and correlates of protection for rotavirus vaccines. Vaccine 24(15):2718鈥?731
    32.Offit PA, Coupar BE, Svoboda YM et al (1994) Induction of RV-specific cytotoxic T lymphocytes by vaccinia virus recombinants expressing individual RV genes. Virology 198(1):10鈥?6PubMed View Article
    33.Novikova NA, Morozova OV, Epifanova NV et al (2012) Rotavirus infection in children of Nizhny Novgorod, Russia: the gradual change of the virus allele from P[8]-1 to P[8]-3 in the period 1984-2010. Arch Virol 157(12):2405鈥?409. doi:10.鈥?007/鈥媠00705-012-1426-4 PubMed View Article
    34.Hull JJ, Teel EN, Kerin TK et al (2011) National Rotavirus Strain Surveillance System. United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr Infect Dis J 30(1 Suppl):42鈥?7. doi:10.鈥?097/鈥婭NF.鈥?b013e3181fefd78鈥?/span>
    35.Kirkwood CD, Boniface K, Barnes GL, Bishop RF (2011) Distribution of rotavirus genotypes after introduction of rotavirus vaccines, Rotarix庐 and RotaTeq庐, into the National Immunization Program of Australia. Pediatr Infect Dis J 30(1 Suppl):48鈥?3. doi:10.鈥?097/鈥婭NF.鈥?b013e3181fefd90鈥?/span> View Article
    36.Pelte C, Cherepnev G, Wang Y et al (2004) Random screening of proteins for HLA-A*0201-binding nine-amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA-A*0201. J Immunol 172(11):6783鈥?789PubMed View Article
    37.Zeller M, Rahman M, Heylen E et al (2010) Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine 28(47):7507鈥?513. doi:10.鈥?016/鈥媕.鈥媣accine.鈥?010.鈥?9.鈥?04
    38.Ward RL, Clark HF, Offit PA (2010) Influence of potential protective mechanisms on the development of live rotavirus vaccines. J Infect Dis 1(202 Suppl):S72鈥揝79. doi:10.鈥?086/鈥?53549 View Article
    39.Bernstain DI, Ward RL (2004) Rotaviruses. Textbook of pediatric infectious diseases, 5th edn, vol 2. Saunders, Philadelphia, pp 2110鈥?133
    40.Feng N, Lawton JA, Gilbert J et al (2002) Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 109(9):1203鈥?213PubMed Central PubMed View Article
    41.Corth茅sy B, Benureau Y, Perrier C et al (2006) Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol 80(21):10692鈥?0699PubMed Central PubMed View Article
  • 作者单位:O. V. Morozova (1) (2)
    T. A. Sashina (1) (2)
    S. G. Fomina (1) (2)
    N. A. Novikova (1) (2)

    1. Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
    2. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Virology
    Medical Microbiology
    Infectious Diseases
  • 出版者:Springer Wien
  • ISSN:1432-8798
文摘
Two live, attenuated rotavirus A (RVA) vaccines, Rotarix and RotaTeq, have been successfully introduced into national immunization programs worldwide. The parent strains of both vaccines were obtained more than 30 years ago. Nonetheless, only very limited data are available on the molecular similarity of the vaccine strains and their genetic relationships to the wild-type strains circulating within the territory of Russian Federation. In this study, we have determined the nucleotide sequences of the genes encoding the viral proteins VP7 and VP4 (the globular domain VP8*) of vaccine strains and natural isolates of rotaviruses in Nizhny Novgorod, Russia. The VP7 and VP4 proteins contain antigenic sites that are the main targets of neutralizing antibodies. Phylogenetic analysis based on VP4 and VP7 showed that the majority of the natural RVA isolates from Nizhny Novgorod and the vaccine strains belong to different clusters. Four amino acids within the VP7 antigenic sites were common in both the wild-type and vaccine strains. The largest number of amino acid differences was found between the vaccine strain Rotarix and the Nizhny Novgorod G2 strains (19 residues out of 29). From 3 to 5 amino acid differences per strain were identified in the antigenic sites of VP4 (domain VP8*) between wild-type strains and the vaccine RotaTeq, and 6-8 substitutions were found when they were compared with the vaccine strain Rotarix. For the first time, immunodominant T-cell epitopes of VP7 were analyzed, and differences in the sequences between the vaccine and the wild-type strains were found. The accumulation of amino acid substitutions in the VP7 and VP4 antigenic sites may potentially reduce the immune protection of vaccinated children from wild-type strains of rotavirus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700