Influences of heat treatment on microstructural evolution and tensile behavior of squeeze-cast Mg–Gd–Y–Zr alloy
详细信息    查看全文
  • 作者:Cunlong Wang ; Guohua Wu ; Enrique J. Lavernia ; Wenjiang Ding
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:52
  • 期:4
  • 页码:1831-1846
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
The effects of solution heat treatment and aging on the microstructural evolution and mechanical behavior of a squeeze-cast (SC) Mg–10Gd–3Y–0.5Zr (GW103K) alloy, processed using various applied pressures (e.g., 0.1, 40, 80 and 160 MPa) were systematically investigated. Our results show that, after solution heat treatment, secondary phases and pressure-induced dislocations are dissolved in the matrix of the squeeze-cast alloys. Moreover, subsequent aging heat treatment leads to an increased age-hardening response relative to that in squeeze-cast GW103K and this trend increases with increasing applied pressure. The room temperature tensile test results show that the yield strength (YS) for the squeeze-cast alloy in the as-cast, the as-T4 heat-treated and the as-T6 heat-treated states increases with increasing applied pressure, from 0.1 to 80 MPa, and remains relatively constant when the applied pressure is increased to 160 MPa, whereas the ultimate tensile strength (UTS) and elongation-to-failure (Ef) increases continuously with increasing applied pressure. The measured increases in YS and UTS (or Ef), are discussed in terms of the mechanisms that govern the evolution of microstructure in squeeze-cast GW103K, paying particular attention to gain size and porosity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700