In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana
详细信息    查看全文
  • 作者:Qiankun Zhu (1)
    Jiaxin Zou (1)
    Mengli Zhu (1)
    Zubi Liu (1)
    Peichun Feng (1)
    Gaotao Fan (1)
    Wanjun Wang (1)
    Hai Liao (1)
  • 关键词:Arabidopsis thaliana ; AtNAC1 ; DNA binding ; Molecular modeling ; NAC transcription factor
  • 刊名:Journal of Molecular Modeling
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:20
  • 期:3
  • 全文大小:2,368 KB
  • 参考文献:1. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79-7 CrossRef
    2. Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 66:1833-848 CrossRef
    3. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of / petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159-70 CrossRef
    4. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in / Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841-57 CrossRef
    5. Xie Q, Frugis G, Colgan D, Chua N-H (2000) / Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Gene Dev 14:3024-036 CrossRef
    6. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of / Arabidopsis. Plant Cell 19:270-80 CrossRef
    7. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298-301 CrossRef
    8. Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haseloff J, Scheres B (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in / Arabidopsis root stem cells. Dev Cell 15:913-22 CrossRef
    9. Zhong R, Lee C, Ye Z-H (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044-055 CrossRef
    10. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L-SP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863-76 CrossRef
    11. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of / Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383-97 CrossRef
    12. Lu P-L, Chen N-Z, An R, Su Z, Qi B-S, Ren F, Chen J, Wang X-C (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in / Arabidopsis. Plant Mol Biol 63:289-05 CrossRef
    13. Xie Q, Guo H-S, Dallman G, Fang S, Weissman AM, Chua N-H (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167-70 CrossRef
    14. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035 CrossRef
    15. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169:785-97 CrossRef
    16. Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297-03 CrossRef
    17. Chen Q, Wang Q, Xiong L, Lou Z (2011) A structural view of the conserved domain of rice stress-responsive NAC1. Protein Cell 2:55-3 CrossRef
    18. Ditte HW, Soren L, Niels EM, Addie NO, Charlotte H, Karen S, Leila LL (2012) DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochem J 444:395-04 CrossRef
    19. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The / Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signaling. Biochem J 426:183-96 CrossRef
    20. Yamasaki K, Kigawa T, Watanabe S, Inoue M, Yamasaki T, Seki M, Shinozaki K, Yokoyama S (2012) Structural basis for sequence-specific DNA recognition by an / Arabidopsis WRKY transcription factor. J Biol Chem 287:7683-691 CrossRef
    21. Cohen SX, Moulin M, Hashemolhosseini S, Kilian K, Wegner M, Müller CW (2003) Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J 22:1835-845 CrossRef
    22. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S (2011) Database resources of the national center for biotechnology information. Nucleic Acids Res 39:D38–D51 CrossRef
    23. Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-402 CrossRef
    24. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prli? A, Quesada M, Quinn GB, Westbrook JD (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39:D392–D401 CrossRef
    25. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-948 CrossRef
    26. Sali A (1995) Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1:270-77 CrossRef
    27. Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187-17 CrossRef
    28. Arfken G, Romain J (1967) Mathematical methods for physicists. Phys Today 20:79 CrossRef
    29. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149-54 CrossRef
    30. Elumalai P, Liu H-L (2011) Homology modeling and dynamics study of aureusidin synthase-an important enzyme in aurone biosynthesis of / snapdragon flower. Int J Biol Macromol 49:134-42 CrossRef
    31. Van Gunsteren W, Berendsen H (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311-327 CrossRef
    32. Cheatham TI, Miller J, Fox T, Darden T, Kollman P (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193-194 CrossRef
    33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283-91 CrossRef
    34. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511-519 CrossRef
    35. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407-10 CrossRef
    36. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Meth Enzymol 277:396-04 CrossRef
    37. Ritchie DW, Kemp GJ (2000) Protein docking using spherical polar Fourier correlations. Proteins 39:178-94 CrossRef
    38. Ritchie DW (2003) Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 52:98-06 CrossRef
    39. Tuszynska I, Bujnicki JM (2011) DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. BMC Bioinforma 12:348 CrossRef
    40. Sokkar P, Sathis V, Ramachandran M (2012) Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies. J Mol Model 18:1691-700 CrossRef
    41. Zhu Q-K, Zhou J-Y, Zhang G, Liao H (2012) Homology modeling and molecular docking studies of ( / S)-Scoulerine 9- / O-Methyltransferase from / Coptis chinensis. Chin J Chem 30:2533-538 CrossRef
    42. Shan S, Xia L, Ding X, Zhang Y, Hu S, Sun Y, Yu Z, Han L (2011) Homology modeling of Cry1Ac toxin-binding alkaline phosphatase receptor from / Helicoverpa armigera and its functional interpretation. Chin J Chem 29:427-32 CrossRef
    43. Duval M, Hsieh T-F, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the / Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237-48 CrossRef
    44. Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of / Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481-498 CrossRef
    45. Xue GP (2005) A CELD-fusion method for rapid determination of the DNA-binding sequence specificity of novel plant DNA-binding proteins. Plant J 41:638-49 CrossRef
    46. Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Seki M, Shinozaki K, Yokoyama S (2008) Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains. Plant Physiol Biochem 46:394-01 CrossRef
  • 作者单位:Qiankun Zhu (1)
    Jiaxin Zou (1)
    Mengli Zhu (1)
    Zubi Liu (1)
    Peichun Feng (1)
    Gaotao Fan (1)
    Wanjun Wang (1)
    Hai Liao (1)

    1. School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Erhuanlu Beiyiduan, Chengdu, 610031, China
  • ISSN:0948-5023
文摘
NAC (NAM/ATAF/CUC) transcription factors regulate the expression of the target genes by formation of NAC-DNA complex, which are involved in development, stress responses and nutrient distribution in many metaphyta plants. AtNAC1, a NAC transcription factor from Arabidopsis thaliana, plays an important role in auxin signaling and root development. In order to understand the structure and DNA binding model of AtNAC1, the 3D structure model of AtNAC1 was constructed and docked with its target DNA. The structure of AtNAC1 monomer contained four α-helices and eight β-sheets. Two homo monomers of AtNAC1 formed a homo-dimer. The N-terminal sheet S1, Arg24 and Glu31 played an important role in forming AtNAC1 homo-dimer. AtNAC1 dimer interacted with DNA via its core β-sheet (S5) which contained WKATGKD motif inserting into the major groove of DNA and formed a tight AtNAC1-DNA complex. The DNA sites for AtNAC1 binding were 5-CTGACGTA-3-and 5-GATGACGC-3- Lys102, Ala103, Thr104, Gly105, Lys106, and Asp107 interacting with sugars/bases of DNA were probably responsible for specific recognition of DNA sites. Meanwhile, Arg91, Lys135, and Lys171 binding with phosphate groups of DNA backbone might be the key residues for affinity with DNA. The study provided the in silico framework to understand the interactions of AtNAC1 with DNA at the molecular level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700