Charge structure of a summer thunderstorm in North China: Simulation using a Regional Atmospheric Model System
详细信息    查看全文
  • 作者:Dongxia Liu (1) (2)
    Xiushu Qie (1) (2)
    Liang Peng (3)
    Wanli Li (4)
  • 关键词:RAMS ; electrification parameterization ; discharge parameterization ; charge structure ; thunderstorm
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:31
  • 期:5
  • 页码:1022-1034
  • 全文大小:812 KB
  • 参考文献:1. Altaratz, O., T. Reisin, and Z. Levin, 2005: Simulation of the electrification of winter thunderclouds using the three-dimensional Regional Atmospheric Modeling System (RAMS) model: Single cloud simulations. / J. Geophys. Res., 110(D20), doi: 10.1029/2004JD005616.
    2. Barthe, C., G. Molinie, and J. P. Pinty, 2005: Description and first results of an explicit electrical scheme in a 3D cloud resolving model. / Atmospheric Research, 76(1鈥?), 95鈥?13. CrossRef
    3. Barthe, C., and J. P. Pinty, 2007: Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme. / J. Geophys. Res., 112, D06210, doi: 10.1029/2006JD007484.
    4. Barthe, C., M. Chong, J. P. Pinty, C. Bovalo, and J. Escobar, 2012: CELLS v1.0: updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains. / Geosci. Model Dev., 5, 167鈥?84, doi: 10.5194/gmd-5-167-2012. CrossRef
    5. Braun, S. A., and R. A. Houze, 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. / J. Atmos. Sci., 51, 2733鈥?755. CrossRef
    6. Carey, L. D., M. J. Murphy, T. L. McCormick, and W. S. Nicholas, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. / J. Geophys. Res., 110, D03105, doi: 10.1029/2003JD004371.
    7. Chauzy, S., M. Chong, A. Delannoy, and S. Despiau, 1985: The June 22 tropical squall line observed during COPT81 experiment: Electrical signature associated with dynamical structure and precipitation. / J. Geophys. Res., 90, 6091鈥?098. CrossRef
    8. Chiu, C. S., 1978: Numerical study of cloud electrification in an axisymmetric time-dependent cloud model. / J. Geophys. Res., 83, 5025鈥?049. CrossRef
    9. Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. / Meteor. Atmos. Phys., 82, 5鈥?9. CrossRef
    10. Ely, B. L., R. E. Orville, L. D. Carey, and C. L. Hodapp, 2008: Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. / J. Geophys. Res., 113, D08114, doi: 10.1029/2007JD008445.
    11. Fierro, A. O., L. Leslie, E. Mansell, J. Straka, D. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of microphysics / and electrification in an idealized hurricane-like vortex. / Meteor. Atmos. Phys., 98, 13鈥?3. CrossRef
    12. Fierro, A. O., L. M. Leslie, E. R. Mansell, and J. M. Straka, 2008: Numerical simulations of the electrification and microphysics of the weakly electrified 9 February 1993 TOGA COARE squall line: Comparisons with observations. / Mon. Wea. Rev., 136, 364鈥?79. CrossRef
    13. Helsdon, J. H., Jr., W. A. Wojcik, and R. D. Farley, 2001: An examination of thunderstorm charging mechanisms using a twodimensional storm electrification model. / J. Geophys. Res., 106, 1165鈥?192. CrossRef
    14. Krehbiel, P., R. Thomas, and W. Rison, 2000: Lightning mapping observations in central Oklahoma. / EOS, 81, 21鈥?5. CrossRef
    15. Li, W. L., D. X. Liu, X. S. Qie, S. M. Fu, S. Shu, and Y. C. Chen, 2012: Evaluation of noninductive charging mechanisms and simulation of charge characteristic structure in the early thunderstorm based on RAMS V6.0. / Acta Physica Sinica, 61, 059202. (in Chinese)
    16. Liu, D. X., X. S. Qie, Y. J. Xiong, and G. L. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. / Adv. Atmos. Sci., 28, 866鈥?78, doi: 10.1007/s00376-010-0001-8. CrossRef
    17. MacGorman, D. R., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud model. / J. Appl. Meteor., 40, 459鈥?78. CrossRef
    18. Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. / J. Geophys. Res., 107, 4075, doi: 10.1029/2000JD000244. CrossRef
    19. Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. / J. Geophys. Res., 110, doi: 10.1029/2004JD005287.
    20. Marshall, B. J. P., J. Latham, and C. P. R. Saunders, 1978: A laboratory study of charge transfer accompanying collision of ice crystals with simulated hailstone. / Quart. J. Roy. Meteor. Soc., 104, 163鈥?78. CrossRef
    21. Norville, K., M. Baker, and J. Latham, 1991: A numerical study of thunderstorm electrification: Model development and case study. / J. Geophys. Res., 96, 7463鈥?481. CrossRef
    22. Pielke, R. A., and Coauthors, 1992: A comprehensive meterorological modeling system-RAMS. / Meteor. Atmos. Phys, 49, 69鈥?1. CrossRef
    23. Qie, X. S., T. L. Zhang, C. P. Chen, G. S. Zhang, T. Zhang, and W. Z. Wei, 2005: The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. / Geophys. Res. Lett., 32, L05814, doi: 10.1029/2004GL022162. CrossRef
    24. Qie, X., T. Zhang, G. Zhang, and T. Zhang, 2009: Electrical characteristics of thunderstorms in different plateau regions of China. / Atmospheric Research, 91, 244鈥?49. CrossRef
    25. Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). / Atmospheric Research, 76, 247鈥?71. CrossRef
    26. Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. / J. Geophys. Res., 96, 11 007鈥?1 017. CrossRef
    27. Schuur, T. J., and S. A. Rutledge, 2000: Electrification of stratiform regions in mesoscale convective systems. Part II: Twodimensional numerical model simulations of a symmetric MCS. / J. Atmos. Sci., 57, 1983鈥?006. CrossRef
    28. Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. / J. Geophys. Res., 101, 26 641鈥?6 668. CrossRef
    29. Stolzenburg, M., W. Rust, B. Smull, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions.1. Mesoscale convective systems. / J. Geophys. Res., 103, 14059鈥?4 078. CrossRef
    30. Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. / J. Atmos. Sci., 35, 1536鈥?548. CrossRef
    31. Takahashi, T., 1984: Thunderstorm electrification-a numerical study. / J. Atmos. Sci., 41(17), 2541鈥?558. CrossRef
    32. Tan, Y. B., S. C. Tao, B. Y. Zhu, M. Ma, and W. T. Lu, 2006: Numerical simulations of the bi-level and branched structure of intracloud lightning flashes. / Science in China Series D, 49, 661鈥?72. CrossRef
    33. Tremback, C. J., 1990: Numerical simulation of a mesoscale convective complex: Model development and numerical results, Ph. D. dissertation, Dep. of Atmos. Sci., Colo. State Univ., Fort Collins, 247 pp.
    34. Tripoli, G. J., and W. R. Cotton, 1982: The Colorado State University three-dimensional cloud/mesoscale model-1982. Part I: General theoretical framework and sensitivity experiments. / Journal de Recherches Atmospheriques, 16, 185鈥?19.
    35. Wang, J. F., X. S. Qie, H. Lu, J. L. Zhang, X. X. Yu, F. Shi, 2012: Effect of thunderstorm electric field on intensity of cosmic ray muons. / Acta Physica Sinica, 61, 159鈥?02. (in Chinese)
    36. Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. / J. Geophys. Res., 94, 213鈥?20.
    37. Xu, L. T., Y. J. Zhang, F. Wang, and D. Zheng, 2012: Coupling of electrification and discharge process with WRF model and its preliminary verification. / Chinese J. Atmos. Sci., 36, 1041鈥?052. (in Chinese)
    38. Zhang, Y. J, M. H. Yan, and X. S. Liu, 1999: Simulation study of discharge processes in thunderstorm. / Chinese Science Bulletin, 44, 2098鈥?102. CrossRef
    39. Zhao, Z. K., and Coauthors, 2009: Electric field soundings and the charge structure within an isolated thunderstorm. / Chinese Science Bulletin, 55, 872鈥?76. CrossRef
    40. Ziegler, C. L., D. R. MacGorman, P. S. Ray, and J. E. Dye, 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. / J. Geophys. Res., 96, 12 833鈥?2 855. CrossRef
  • 作者单位:Dongxia Liu (1) (2)
    Xiushu Qie (1) (2)
    Liang Peng (3)
    Wanli Li (4)

    1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, 210044, China
    3. National Center of Atmospheric Research, Boulder, 80302, USA
    4. China Meteorological Administration Training Center, Beijing, 100081, China
  • ISSN:1861-9533
文摘
Electrification and simple discharge schemes are coupled into a 3D Regional Atmospheric Model System (RAMS) as microphysical parameterizations, in accordance with electrical experiment results. The dynamics, microphysics, and electrification components are fully integrated into the RAMS model, and the inductive and non-inductive electrification mechanisms are considered in the charging process. The results indicate that the thunderstorm mainly had a normal tripole charge structure. The simulated charge structure and lightning frequency are basically consistent with observations of the lightning radiation source distribution. The non-inductive charging mechanism contributed to the electrification during the whole lifetime of the thunderstorm, while the inductive electrification mechanism played a significant role in the development period and the mature stage when the electric field reached a large value. The charge structure in the convective region and the rearward region are analyzed, showing that the charge density in the convective region was double that in the rearward region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700