Rhizosphere Phytoremediation with Cyperus rotundus for Diesel-Contaminated Wetlands
详细信息    查看全文
  • 作者:Yunyun Hou ; Xiaoyan Liu ; Xinying Zhang ; Xiaoxin Hu…
  • 关键词:Phytoremediation effect ; Cyperus rotundus ; Diesel ; contaminated soil ; Wetland
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:227
  • 期:1
  • 全文大小:1,086 KB
  • 参考文献:Al-Baldawi, I. A., Abdullah, S. R. S., Anuar, N., Suja, F., & Mushrifah, I. (2015). Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol. Eng., 74, 463鈥?73. doi:10.鈥?016/鈥媕.鈥媏coleng.鈥?014.鈥?1.鈥?07 .CrossRef
    Basumatary, B., Saikia, R., Das, H. C., & Bordoloi, S. (2013). Field Note: Phytoremediation of petroleum sludge contaminated field using sedge species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) hassk. Int. J. Phytoremediation, 15, 877鈥?88. doi:10.鈥?080/鈥?5226514.鈥?012.鈥?60520 .CrossRef
    Chigbo, C. & Batty, L. (2015). Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays. Water, air, and soil pollution, 226, 74. doi: 10.鈥?007/鈥媠11270-014-2277-2 .
    Chiu, S. W., Ho, K. M., Chan, S. S., So, O. M., & Lai, K. H. (2006). Characterization of contamination in and toxicities of a shipyard area in Hong Kong. Environ. Pollut., 142, 512鈥?20. doi:10.鈥?016/鈥媕.鈥媏nvpol.鈥?005.鈥?0.鈥?38 .CrossRef
    Claassens, S., Van Rensburg, P. J. J., & Van Rensburg, L. (2006). Soil microbial community structure of coal mine discard under rehabilitation. Water, Air, and Soil Pollution, 174(1鈥?), 355鈥?66. doi:10.鈥?007/鈥媠11270-006-9125-y .CrossRef
    Cofield, N., & Katherine Banks, M. (2008). Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere, 70, 1644鈥?652. doi:10.鈥?016/鈥媕.鈥媍hemosphere.鈥?007.鈥?7.鈥?57 .CrossRef
    Conkle, J. L., & White, J. R. (2012). An initial screening of antibiotic effects on microbial respiration in wetland soils. J Env Scand Health, Part A, 47(10), 1381鈥?390. doi:10.鈥?080/鈥?0934529.鈥?012.鈥?72315 .CrossRef
    Euliss, K., Ho, C. H., Schwab, A. P., Rock, S., & Katherine Banks, M. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresource Technol, 99(6), 1961鈥?971. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?007.鈥?3.鈥?55 .CrossRef
    Guan, S. Y. (1986). Soil enzymes and their analysis (in Chinese) (pp. 294鈥?13). Beijing: Agricultural Press.
    Lin, Q. X., & Mendelssohn, I. A. (1996). A comparative investigation of the effects of south Louisiana crude oil on the vegetation of fresh, brackish and salt marshes. Marine Pollution Bulletin, 32(2), 202鈥?09.CrossRef
    Lin, Q. X., & Mendelssohn, I. A. (2009). Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Ecological engineering, 35, 85鈥?1. doi:10.鈥?016/鈥媕.鈥媏coleng.鈥?008.鈥?9.鈥?10 .CrossRef
    Liu, X. Y., Wang, Z. Z., Zhang, X. Y., Wang, J., Xu, G., Cao, Z. N., et al. (2011). Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms. Ecotoxicology and Environmental Safety, 74, 1967鈥?972. doi:10.鈥?016/鈥媕.鈥媏coenv.鈥?011.鈥?6.鈥?05 .CrossRef
    Lone, M. I., He, Z. L., & Stoffella, P. J. (2008). Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang University Science B, 9(3), 210鈥?20. doi:10.鈥?631/鈥媕zus.鈥婤0710633 .CrossRef
    Macek, T., Rezek, J., & Vrchotova, B. (2007). Phytoremediation. Listy cukrovarnicke a reparske, 123(9鈥?0), 312鈥?14.
    Malaviya, P., & Singh, P. (2012). Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit. Rev. Environ. Sci. Technol., 42, 2575鈥?647. doi:10.鈥?080/鈥?0643389.鈥?011.鈥?92761 .CrossRef
    Marecik, R., Chrzanowski, 艁., Piotrowska-Cyplik, A., Juzwa, W., & Biega艅ska-Marecik, R. (2015). Rhizosphere as a tool to introduce a soil-isolated hydrocarbon-degrading bacterial consortium into a wetland environment. Int. Biodeterior. Biodegrad, 97, 135鈥?42. doi:10.鈥?016/鈥媕.鈥媔biod.鈥?014.鈥?1.鈥?06 .CrossRef
    Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut., 138, 86鈥?1. doi:10.鈥?016/鈥媕.鈥媏nvpol.鈥?005.鈥?2.鈥?23 .CrossRef
    Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr. Microbiol., 43, 328鈥?35. doi:10.鈥?007/鈥媠002840010311 .CrossRef
    Muratova, A., Pozdnyakova, N., Golubev, S., Wittenmayer, L., Makarov, O., Merbach, W., et al. (2009). Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment. Chemosphere, 74, 1031鈥?036. doi:10.鈥?016/鈥媕.鈥媍hemosphere.鈥?008.鈥?1.鈥?11 .CrossRef
    Oliveira, T. C., Fontes, R. L. F., De Rezende, S. T., & Alvarez, V. H. (2013). Effects of nickel and nitrogen soil fertilization on lettuce growth and urease activity. Revista brasileira de ciencia do solo, 37(3), 698鈥?06.CrossRef
    Teiter, S., & Mander, 脺. (2005). Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecol. Eng., 25(5), 528鈥?41. doi:10.鈥?016/鈥媕.鈥媏coleng.鈥?005.鈥?7.鈥?11 .CrossRef
    Wang, J., Liu, X. Y., Zhang, X. Y., Wang, Z. Z., Cao, Z. N., Zhong, C. L., et al. (2010). Phytoremediation potential of Cyperus rotundus for diesel-contaminated wetland. J Shanghai University, 14(5), 326鈥?31.CrossRef
    Wang, Q., Liu, X. Y., Wang, C. H., Zhang, X. Y., Li, H. B., Chen, T. R., et al. (2015). Solubilization effect of surfactants on morphological transformation of cadmium and pyrene in co-contaminated soils. Water, Air, and Soil Pollution, 226, 147鈥?56.CrossRef
    Wei, J., Liu, X. Y., Wang, Q., Chen, X. P., Li, H. B., Li, X., et al. (2014). Different biomass allocation, soil enzyme activities and microbial characteristics between diesel-degrading Plants. Clean-Soil, Air, Water, 42(12), 1765鈥?770. doi:10.鈥?002/鈥媍len.鈥?01300309 .CrossRef
    Xie, X. M., Liao, M., Fang, S., Peng, Y., Yang, J., & Chai, J. J. (2012). Spatial characteristics of pyrene degradation and soil microbial activity with the distance from the ryegrass (Lolium perenne L.) root surface in a multi-interlayer rhizobox. J Hazard Mater, 213鈥?14, 156鈥?60. doi:10.鈥?016/鈥媕.鈥媕hazmat.鈥?012.鈥?1.鈥?70 .CrossRef
    Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A review on phytoremediation of crude oil spills. Water, Air, and Soil Pollution, 226, 279. doi:10.鈥?007/鈥媠11270-015-2550-z .CrossRef
    Yong, Y. E., & Tam, N. F. (2007). Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina. J Environ Sci, 19, 1355鈥?360. doi:10.鈥?016/鈥婼1001-0742(07)60221-6 .CrossRef
    Zhai, J., Zou, J. S., He, Q., Ning, K. J., & Xiao, H. W. (2012). Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland. Environ Technol, 33(17), 1999鈥?006. doi:10.鈥?080/鈥?9593330.鈥?012.鈥?55320 .CrossRef
    Zhang, Z. N., Zhou, Q. X., Peng, S. W., & Cai, Z. (2010). Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ, 408, 5600鈥?605. doi:10.鈥?016/鈥媕.鈥媠citotenv.鈥?010.鈥?8.鈥?03 .CrossRef
    Zhou, Q. H., Wu, Z. B., Cheng, S. P., He, F., & Fu, G. P. (2005). Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry, 37, 1454鈥?459. doi:10.鈥?016/鈥媕.鈥媠oilbio.鈥?005.鈥?1.鈥?03 .CrossRef
    Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution, 184, 235鈥?42. doi:10.鈥?007/鈥媠11270-007-9412-2 .CrossRef
  • 作者单位:Yunyun Hou (1)
    Xiaoyan Liu (1)
    Xinying Zhang (1)
    Xiaoxin Hu (1)
    Liya Cao (1)

    1. Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No.99, Shangda Road, Baoshan District, Shanghai, 200444, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Diesel spills may considerably damage the sensitive coastal wetlands along Huangpu River, Shanghai, China. In this experiment, Cyperus rotundus, a dominant coastal marsh plant, was cultured in diesel-contaminated soils at concentrations of 0, 1000, 5000, 10,000, 15,000 and 20,000 mg kg鈭? to investigate its phytoremediation potential. In this study, plant biomass, removal characteristic of diesel, redox potential, and activities of urease, dehydrogenase, and polyphenoloxidase in soils were determined after 50-day pot experiments. The results demonstrated that soils planted with Cyperus rotundus had significantly less diesel than did unplanted soils. The residual concentrations of alkanes in soils at 10,000 mg kg鈭? after 50 days showed that 52.9鈥?2.0 % of Fraction a (C14鈥揅19) and 47.8鈥?4.4 % of Fraction b (C20鈥揅27) were removed in unplanted soils, while more than 90 % of both Fractions a and b were removed in planted soils. The peak value of urease and dehydrogenase activities was at 15,000 mg kg鈭? of diesel-contaminated concentration; however, the peak value of polyphenoloxidase activity appeared at 10,000 mg kg鈭?. It was deduced that the diesel concentration between 10,000 and 15,000 mg kg鈭? might be a limit which Cyperus rotundus could tolerate diesel pollution. Keywords Phytoremediation effect Cyperus rotundus Diesel-contaminated soil Wetland

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700