Pivot selection for metric-space indexing
详细信息    查看全文
  • 作者:Rui Mao ; Peihan Zhang ; Xingliang Li ; Xi Liu…
  • 关键词:Metric ; space indexing ; Pivot selection ; Intrinsic dimension ; Objective function ; Range query
  • 刊名:International Journal of Machine Learning and Cybernetics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:7
  • 期:2
  • 页码:311-323
  • 全文大小:1,841 KB
  • 参考文献:1.Mao R, Honglong X, Wenbo W, Li J, Li Y, Minhua L (2015) Overcoming the challenge of variety: big data abstraction, the next evolution of data management for AAL communication systems. IEEE Commun Mag 53(1):42–47CrossRef
    2.Roman S (1992) Advanced linear. Algebra graduate texts in mathematics, vol 135. Springer, BerlinCrossRef
    3.Chavez E, Navarro G, Baeza-Yates R, Marroqu J (2001) Searching in metric spaces. ACM Comput Surv 33(3):273–321CrossRef
    4.Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach. Springer, HeidelbergMATH
    5.Samet H (2006) Foundations of multidimensional and metric data structures. Morgan-Kaufmann, San FranciscoMATH
    6.Hjaltason G, Samet H (2003) Index-driven similarity search in metric spaces. ACM Trans Database Syst (TODS) 28(4):517–580CrossRef
    7.Mao R, Miranker W, Miranker DP (2012) Pivot Selection: dimension reduction for distance-based indexing. J Discret Algorithm Elsevier 13:32–46MathSciNet CrossRef MATH
    8.Uhlmann JK (1991) Satisfying general proximity/similarity queries with metric trees. Inf Proc Lett 40(4):175–179CrossRef MATH
    9.Yianilos PN (1993) Data structures and algorithms for nearest neighbor search in general metric spaces. In the fourth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics
    10.Bozkaya T, Ozsoyoglu M (1999) Indexing large metric spaces for similarity search queries. ACM Trans Database Syst 24(3):361–404CrossRef
    11.Bustos B, Navarro G, Chavez E (2003) Pivot selection techniques for proximity searching in metric spaces. Pattern Recogn Lett 24(14):2357–2366CrossRef MATH
    12.Clarkson KL (2006) Nearest-neighbor searching and metric space dimensions, In: Nearest-neighbor methods for learning and vision: theory and practice, MIT Press, pp. 15–59
    13.Kegl B (2003) Intrinsic dimension estimation using packing numbers. Adv Neural Inf Proc Syst 15:681–688
    14.Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recogn 36(12):2945–2954CrossRef MATH
    15.Mao R, Xu W, Ramakrishnan S, Nuckolls G, Miranker DP (2005) On optimizing distance-based similarity search for biological databases. In the 2005 IEEE computational systems bioinformatics conference (CSB 2005)
    16.Traina C, Jr, Traina A, Faloutsos C (1999) Distance exponent: a new concept for selectivity estimation in metric trees, Technical Report CMU-CS-99-110, Computer Science Department, Carnegie Mellon University
    17.Beyer KS, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful? The 7th international conference on database theory. Springer, Berlin
    18.Shaft U, Ramakrishnan R (2005) When is nearest neighbors indexable? In the tenth international conference on database theory (ICDT 2005). Springer, Berlin
    19.Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica 9D(1–2):189–208MathSciNet MATH
    20.Roweis S (1997) EM Algorithms for PCA and SPCA. Neural Inf Proc Syst 10:626–632
    21.Brin S (1995) Near neighbor search in large metric spaces. In the 21th international conference on very large data bases (VLDB’95). 1995. Zurich, Switzerland, Morgan Kaufmann Publishers Inc
    22.Ciaccia P, Patella M (1997) Bulk loading the M-tree. In 9th Australasian database conference (ADO’98)
    23.Navarro G (1999) Searching in metric spaces by spatial approximation. In: Proceedings of the string processing and information retrieval symposium and international workshop on groupware. IEEE Computer Society
    24.Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theoret Comput Sci 38:293–306MathSciNet CrossRef MATH
    25.Hochbaum DS, David B (1985) Shmoys, A best possible heuristic for the k-center problem. Math Op Res 10(2):180–184CrossRef MATH
    26.The UMAD project: https://​github.​com/​ruimao/​UMAD
    27.Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRef
    28.Xu W, Miranker DP (2004) A metric model of amino acid substitution. Bioinformatics 20(8):1214–1221CrossRef
    29.Navarro G (2009) Analyzing metric space indexes: what for? In the proceedings of the second international conference on similarity search and applications (SISAP2009), pp. 3–10
    30.Venkateswaran J, Kahveci T, Jermaine CM, Lachwani D (2008) Reference-based indexing for metric spaces with costly distance measures. VLDB J 17(5):1231–1251 Springer CrossRef
    31.Celik C (2002) Priority vantage points structures for similarity queries in metric spaces. In: Proceedings of EurAsia-ICT 2002: information and communication technology, ser. LNCS(2510). pp. 256–263. Springer
    32.Celik C (2008) Effective use of space for pivot-based metric indexing structures. In: Proceedings of international workshop on similarity search and applications (SISAP’08). IEEE Press, pp. 402–409
    33.Micó ML, Oncina J, Vidal E (1994) A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition Letters 5(1):9–17CrossRef
    34.Vleugels J, Veltkamp RC (2002) Efficient image retrieval through vantage objects. Pattern Recogn. 35(1):69–80 Elsevier CrossRef MATH
    35.Van Leuken RH, Veltkamp RC (2011) Selecting vantage objects for similarity indexing. ACM Trans Multim Comput Commun Appl 7(3):1–18CrossRef
    36.Shapiro M (1977) The choice of reference points in best-match file searching. Commun ACM 20(5):339–343CrossRef
    37.Ramasubramanian V, Paliwal KK (1992) An efficient approximation-elimination algorithm for fast nearest-neighbor search based on a spherical distance coordinate formulation. Pattern Recogn Lett 13(7):471–480CrossRef
    38.Traina C Jr, Filho RF, Traina AJ, Vieira MR, Faloutsos C (2007) The Omni-family of all-purpose access methods: a simple and effective way to make similarity search more efficient. VLDB J 16(4):483–505CrossRef
    39.Mao R, Xu W, Singh N, Miranker DP (2005) An assessment of a metric space database index to support sequence homology. Int J Artif Intell Tools 14(5):867–885CrossRef
    40.Hennig C, Latecki LJ (2003) The choice of vantage objects for image retrieval. Pattern Recognit 36(9):2187–2196CrossRef MATH
    41.Brisaboa NR, Farina A, Pedreira O, Reyes N (2006) Similarity search using sparse pivots for efficient multimedia information retrieval. In Proceedings of the 8th IEEE international symposium on multimedia (ISM’06). IEEE Press, pp. 881–888
    42.Bustos B, Pedreira O, Brisaboa NR (2008) A dynamic pivot selection technique for similarity search in metric spaces. In Proceedings of 1st international workshop on similarity search and applications (SISAP’08). IEEE Press, pp. 105–112
    43.Berman A, Shapiro LG (1998) Selecting good keys for triangle-inequality-based pruning algorithms. In: Proceedings of the 1998 international workshop on content-based access of image and video databases (CAIVD ‘98), pp. 12–19,1998, Bombay, India
  • 作者单位:Rui Mao (1)
    Peihan Zhang (1)
    Xingliang Li (2)
    Xi Liu (1)
    Minhua Lu (3)

    1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
    2. College of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, China
    3. School of Medicine, Shenzhen University, Shenzhen, 518060, China
  • 刊物类别:Engineering
  • 刊物主题:Artificial Intelligence and Robotics
    Statistical Physics, Dynamical Systems and Complexity
    Computational Intelligence
    Control , Robotics, Mechatronics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1868-808X
文摘
Metric-space indexing abstracts various data types into universal metric spaces and prunes data only exploiting the triangle inequality of the distance function in metric spaces. Since there is no coordinates in metric space, one usually first pick a number of reference points, pivots, and consider the distances from a data point to the pivots as its coordinates. In this paper, we first survey and discuss the state of the art of pivot selection for metric-space indexing from the perspectives of importance, objective function, number of pivots, and selection algorithm. Further, we propose a new objective function, a new method to determine the number of pivots and an incremental sampling framework for pivot selection. Experimental results show that the new objective function is more consistent with the query performance, the new method to determine the number of pivots is more efficient, and the incremental sampling framework leads to better query performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700