Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia
详细信息    查看全文
  • 作者:Xishan Zhu (1)
    Ziying Lin (1)
    Jing Du (2)
    Xu Zhou (1)
    Lawei Yang (1)
    Gang Liu (1)
  • 关键词:microRNAs ; Cancer stem cells ; Chronic myeloid leukemia (CML)
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:390
  • 期:1-2
  • 页码:75-84
  • 全文大小:827 KB
  • 参考文献:1. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5:2862鈥?866 CrossRef
    2. J酶rgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109:4016鈥?019 CrossRef
    3. J酶rgensen HG, Copland M, Allan EK, Jiang X, Eaves A, Eaves C (2006) Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 12:626鈥?33 CrossRef
    4. Xishan Z, Xinna Z, Baoxin H, Jun R (2013) Impaired immunomodulatory function of chronic myeloid leukemia cancer stem cells and the possible mechanism involved in it. Cancer Immunol Immunother 62(4):689鈥?03 CrossRef
    5. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-尾 and promotes tumor invasion and angiogenesis. Genes Dev 14:163鈥?76
    6. Fridman R, Toth M, Chvyrkova I, Meroueh S, Mobashery S (2003) Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22:153鈥?66 CrossRef
    7. Xishan Z, Xu Z, Lawei Y, Gang L (2012) Hemangioblastic characteristics of cancer stem cells in chronic myeloid leukemia. Clin Lab 58(7鈥?):607鈥?13
    8. Paupert J, Mansat-De Mas V, Demur C (2008) Cell-surface MMP-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle 7(8):1047鈥?053 CrossRef
    9. Fatica A, Fazi F (2013) MicroRNA-regulated pathways in hematological malignancies: how to avoid cells playing out of tune. Int J Mol Sci 14(10):20930鈥?0953 CrossRef
    10. Redondo-Mu帽oz J, Escobar-D铆az E, Samaniego R (2006) MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 108(9):3143鈥?151 CrossRef
    11. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells. Clin Cancer Res 12(6):1828鈥?838 CrossRef
    12. Janowska-Wieczorek A, Majka M, Marquez-Curtis L, Wertheim JA, Turner AR, Ratajczak MZ (2002) BCR鈥揂BL-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants. Leukemia 16(6):1160鈥?166 CrossRef
    13. Kaneta Y, Kagami Y, Tsunoda T, Ohno R, Nakamura Y, Katagiri T (2003) Genome-wide analysis of gene-expression profiles in chronic myeloid leukemia cells using a cDNA microarray. Int J Oncol 23(3):681鈥?91
    14. Bruchova H, Borovanova T, Klamova H, Brdicka R (2002) Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk Lymphoma 43(6):1289鈥?295 CrossRef
    15. Ries C, Loher F, Zang C, Ismair MG, Petrides PE (1999) Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clin Cancer Res 5(5):1115鈥?124
    16. Guo P, Nie Q, Lan J, Ge J, Qiu Y, Mao Q (2013) C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem Biophys Res Commun 441(1):186鈥?90 CrossRef
    17. Miska EA, Alvarez-Saavedra E, Townsend M et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68 CrossRef
    18. Sun Y, Koo S, White N et al (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188 CrossRef
    19. Teichler S, Illmer T, Roemhild J, Ovcharenko D, Stiewe T, Neubauer A (2011) MicroRNA29a regulates the expression of the nuclear oncogene Ski. Blood 118(7):1899鈥?902 CrossRef
    20. Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274鈥?281 CrossRef
    21. Liang RQ, Li W, Li Y et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17 CrossRef
    22. Thomson JM, Parker J, Perou CM et al (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47鈥?3 CrossRef
    23. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155鈥?61 CrossRef
    24. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241鈥?47 CrossRef
    25. Pouladi N, Kouhsari SM, Feizi MH, Gavgani RR, Azarfam P (2013) Overlapping region of p53/Wrap53 transcripts: mutational analysis and sequence similarity with microRNA-4732-5p. Asian Pac J Cancer Prev 14(6):3503鈥?507 CrossRef
    26. Wang L, Li B, Li L, Wang T (2013) MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells. Asian Pac J Cancer Prev 14(6):3499鈥?502 CrossRef
    27. Xing HJ, Li YJ, Ma QM, Wang AM, Wang JL, Sun M, Jian Q, Hu JH, Li D, Wang L (2013) Identification of microRNAs present in congenital heart disease associated copy number variants. Eur Rev Med Pharmacol Sci 17(15):2114鈥?120
    28. Li X, Zhang X, Wang T, Sun C, Jin T, Yan H, Zhang J, Li X, Geng T, Chen C, Ma A, Li S (2013) Regulation by bisoprolol for cardiac microRNA expression in a rat volume-overload heart failure model. J Nanosci Nanotechnol 13(8):5267鈥?275 CrossRef
    29. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944鈥?3949 CrossRef
    30. Cheng AM, Byrom MW, Shelton J et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290鈥?297 CrossRef
    31. Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive 鈥榮ensor鈥?transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10):1079鈥?083 CrossRef
    32. Felli N, Fontana L, Pelosi E et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081鈥?8086 CrossRef
    33. Karaayvaz M, Zhai H, Ju J (2013) miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis 4:e659. doi:10.1038/cddis.2013.193 CrossRef
    34. Zhang J, Zhang D, Wu GQ, Feng ZY, Zhu SM (2013) Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int 12(3):305鈥?09 CrossRef
    35. Ma D, Tao X, Gao F, Fan C, Wu D (2012) miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncol Lett 4(3):483鈥?88
    36. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ram铆rez CM, Mattison JA, de Cabo R, Su谩rez Y, Fern谩ndez-Hernando C (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33(11):2339鈥?352. doi:10.1128/MCB.01714-12 CrossRef
    37. Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C, Wang Z (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288(19):13748鈥?3761. doi:10.1074/jbc.M112.381392 CrossRef
    38. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational experimental approach predicts human microRNA targets. Genes Dev 18:1165鈥?178 CrossRef
    39. Krek A (2005) Combinatorial microRNA target predictions. Nat Genet 37:495鈥?00 CrossRef
    40. Grun D, Wang Y, Langenberger D et al (2005) microRNA Target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13 CrossRef
  • 作者单位:Xishan Zhu (1)
    Ziying Lin (1)
    Jing Du (2)
    Xu Zhou (1)
    Lawei Yang (1)
    Gang Liu (1)

    1. Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, China
    2. Department of Urology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
  • ISSN:1573-4919
文摘
Accumulating data indicate that cancer stem cells play an important role in tumorigenesis and are underlying cause of tumor recurrence and metastasis, specifically in chronic myeloid leukemia (CML). We aim to detect the miRNAs that are correlated with the cancer stem cells in CML to provide theoretical basis for clinical application. We first analyzed microRNA expression profiles of CML leukemia patients compared with normal controls by microarray analysis and validated the results by real-time PCR. A single microRNA signature classified CML from normal was detected. We also determined the absolute copy numbers of these three microRNAs in normal adults. The results showed that three microRNAs (miR-150, miR-23a, and miR-130a) were identified to significantly decrease in expanded 38 CML patients compared with 90 normal controls. Molecular and statistical analysis showed that the decreased microRNAs were significant in clinical analysis. All these results indicated that those three microRNAs could act as a tumor suppressor and their decreased expression might be one of the causes of leukemia. Accordingly, clarifying their regulatory mechanisms might delineate their potentials as drug targets of gene therapy for CML.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700