Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin
详细信息    查看全文
  • 作者:Shuhuai Li ; Xuejin Wu ; Qun Zhang ; Pingping Li
  • 关键词:Benzimidazole carbamate ; Scanning electron microscopy ; Zeta potential ; X ; ray diffraction ; FTIR ; X ; ray photoelectron spectroscopy ; Solid ; phase extraction ; Gold nanoparticles
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:183
  • 期:4
  • 页码:1433-1439
  • 全文大小:513 KB
  • 参考文献:1.Van den Brink PJ, Hattink J, Bransen F, Van Donk E, Brock T (2000) Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat Toxicol 48:251–264CrossRef
    2.Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2014) Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. Int J Environ Sci Te 11:765–774CrossRef
    3.Lin L, Peng Z, Yang CL, Wang MY, Zha YB, Liu LL, Zeng SD (2013) Determination of imidacloprid, carbendazim and thiabendazole residues in vegetables and fruits by HPLC. Adv Mater Res 781:1392–1396CrossRef
    4.Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504CrossRef
    5.Bates F, del Valle M (2015) Voltammetric sensor for theophylline using sol–gel immobilized molecularly imprinted polymer particles. Microchim Acta 182:933–942CrossRef
    6.Gao L, Chen L, Li X (2015) Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates. Microchim Acta 182:781–787CrossRef
    7.Pardeshi S, Dhodapkar R, Kumar A (2014) Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem 146:385–393CrossRef
    8.Li Y, Zhao X, Li P, Huang Y, Wang J, Zhang J (2015) Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water. Anal Chim Acta 884:106–113CrossRef
    9.Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L (2014) A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens Bioelectron 54:199–206CrossRef
    10.Li L, Fan L, Dai Y, Kan X (2015) Recognition and determination of bovine hemoglobin using a gold electrode modified with gold nanoparticles and molecularly imprinted self-polymerized dopamine. Microchim Acta 182:1–7CrossRef
    11.Kecili R, Billing J, Nivhede D, Sellergren B, Rees A, Yilmaz E (2014) Fast identification of selective resins for removal of genotoxic aminopyridine impurities via screening of molecularly imprinted polymer libraries. J Chromatogr A 1339:65–72CrossRef
    12.Zhao M, Zhang C, Zhang Y, Guo XZ, Yan HS, Zhang HQ (2014) Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in a real biological sample. Chem Commun 100:2208–2210CrossRef
    13.Gu L, Jiang X, Liang Y, Zhou T, Shi G (2013) Double recognition of dopamine based on a boronic acid functionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite. Analyst 138:5461–5469CrossRef
    14.Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt AC, Mosbach K, Nicholls IA (1999) Study of the nature of recognition in molecularly imprinted polymers, II: influence of monomer-template ratio and sample load on retention and selectivity. J Chromatogr A 848:39–49CrossRef
    15.Zhong N, Byun HS, Bittman R (2001) Hydrophilic cholesterol-binding molecular imprinted polymers. Tetrahedron Lett 42:1839–1841CrossRef
    16.Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2012) Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym 89:623–631CrossRef
    17.Srinivasan K, Stalin T, Shanmugapriya A, Sivakumar K (2012) Spectroscopic and electrochemical studies on the interaction of an inclusion complex of β-cyclodextrin with 2, 6-dinitrophenol in aqueous and solid phases. J Mol Struct 1036:494–504CrossRef
    18.Kyzas GZ, Lazaridis NK, Bikiaris DN (2012) Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym 91:198–208CrossRef
    19.Zhang W, Qin L, He XW, Li WY, Zhang YK (2009) Novel surface modified molecularly imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J Chromatogr A 1216:4560–4567CrossRef
    20.Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer- size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209–2211CrossRef
    21.Lee J, Kwon SG, Park JG, Hyeon T (2015) Size dependence of metal-insulator transition in stoichiometric Fe3O4 nanocrystals. Nano Lett 15:4337–4342CrossRef
    22.Azodi-Deilami S, Najafabadi AH, Asadi E, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchim Acta 181:1823–1832CrossRef
    23.Li C, Wei R, Xu Y, Sun A, Wei L (2014) Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth. Nano Res 7:536–543CrossRef
    24.Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRef
    25.Li JP, Wei XP, Yuan YH (2009) Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensors Actuators B Chem 139:400–406CrossRef
    26.Bao J, Chen W, Liu TT, Zhu YL, Jin PY, Wang LY, Liu JF, Wei YG, Li YD (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298CrossRef
  • 作者单位:Shuhuai Li (1) (2)
    Xuejin Wu (1) (2)
    Qun Zhang (1) (2)
    Pingping Li (1) (2)

    1. Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
    2. Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The authors describe a nanomaterial for solid-phase extraction of carbendazim. Magnetic molecularly imprinted polymer nanoparticles (mag-MIP-NPs) were obtained by immobilizing the MIP and a thiolated β-cyclodextrin on the surface of magnetite (Fe3O4) nanoparticles coated with gold nanoparticles. Both the recognition sites of the MIP and the hydrophobic cavities in the β-cyclodextrin contribute to the specific molecular recognition and extraction of carbendazim. The mag-MIP-NPs have an apparent adsorption capacity of 190 mg⋅g‾1. Spiked vegetables were analyzed by using this material for extraction of carbendazim prior to its determination by ultra performance liquid chromatography (UHPLC). Recoveries range from 90.5 % to 109 %, and the detection limit is 3.0 pg⋅mL‾1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700