Progress in defining heterogeneity and modeling periglomerular cells in the olfactory bulb
详细信息    查看全文
  • 作者:Nan Ying (1) (2)
    Jian Tian (1) (2)
    SaiNan Yu (1) (2)
    Jing Zhou (3)
    ShuCai Ling (3)
    Ling Xia (1)
    XueSong Ye (1) (2)
  • 关键词:periglomerular cell ; patch ; clamp ; modeling and simulation ; heterogeneity
  • 刊名:Science China Life Sciences
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:55
  • 期:7
  • 页码:567-575
  • 全文大小:897KB
  • 参考文献:1. Laurent G. A systems perspective on early olfactory coding. Science, 1999, 286: 723鈥?28 CrossRef
    2. Puopolo M, Belluzzi O. Inhibitory synapses among interneurons in the glomerular layer of rat and frog olfactory bulbs. J Neurophysiol, 1998, 80: 344鈥?49
    3. Davison A P, Feng J F, Brown D. Spike synchronization in a biophysically-detailed model of the olfactory bulb. Neurocomputing, 2001, 38: 515鈥?21 CrossRef
    4. Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci, 2002, 3: 884鈥?95 CrossRef
    5. Bazhenov M, Stopfer M, Rabinovich M, / et al. Model of transient oscillatory synchronization in the locust antennal lobe. Neuron, 2001, 30: 553鈥?67 CrossRef
    6. Brody C D, Hopfield J J. Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron, 2003, 37: 843鈥?52 CrossRef
    7. Linster C, Cleland T A. How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci, 2001, 10: 187鈥?93 CrossRef
    8. Cleland T A, Sethupathy P. Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci, 2006, 7: 7 CrossRef
    9. Cleland T A, Linster C. Computation in the olfactory system. Chem Sens, 2005, 30: 801鈥?13 CrossRef
    10. Davison A P. Mathematical modelling of information processing in the olfactory bulb. Dissertation for Doctoral Degree. Cambridge: University of Cambridge, 2001
    11. Kosaka K, Toida K, Aika Y, / et al. How simple is the organization of the olfactory glomerulus? The heterogeneity of so-called periglomerular cells. Neurosci Res, 1998, 30: 101鈥?10 CrossRef
    12. Shipley M T, Ennis M. Functional organization of olfactory system. J Neurobiol, 1996, 30: 123鈥?76 CrossRef
    13. Engl N. Taste and smell in disease. J Med, 1983, 309: 1062鈥?063
    14. Lledo P M, Didier A, Carleton A, / et al. A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc Natl Acad Sci USA, 2001, 98: 6441鈥?446 CrossRef
    15. Martinez D P, Freeman W J. Periglomerular cell-action on mitral cells in olfactory-bulb shown by current source density analysis. Brain Res, 1984, 308: 223鈥?33 CrossRef
    16. Sakurai Y. Population coding by cell assemblies鈥擶hat it really is in the brain. Neurosci Res, 1996, 26: 1鈥?6
    17. Averbeck B B, Lee D. Coding and transmission of information by neural ensembles. Trends Neurosci, 2004, 27: 225鈥?30 CrossRef
    18. Johnson D H, Gruner C M, Baggerly K, / et al. Information-theoretic analysis of neural coding. J Comput Neurosci, 2001, 10: 47鈥?9 CrossRef
    19. Strong S P, Koberle R, van Steveninck R R D, / et al. Entropy and information in neural spike trains. Phys Rev Lett, 1998, 80: 197鈥?00 CrossRef
    20. Pinching A J, Powell T P. The neuropil of the periglomerular region of the olfactory bulb. J Cell Sci, 1971, 9: 379鈥?09
    21. Ribak C E, Vaughn J E, Saito K, / et al. Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res, 1977, 126: 1鈥?8 CrossRef
    22. Toida K, Kosaka K, Heizmann C W, / et al. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb: III. Structural features of calbindin D28K-immunoreactive neurons. J Comp Neurol, 1998, 392: 179鈥?98 CrossRef
    23. Toida K, Kosaka K, Aika Y, / et al. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb鈥擨V. Intraglomerular synapses of tyrosine hydroxylase-immunoreactive neurons. Neuroscience, 2000, 101: 11鈥?7 CrossRef
    24. Alonso J R, Brinon J G, Martinez-Guijarro F J, / et al. Coexpression of neurocalcin with other calcium-binding proteins in the rat main olfactory bulb. J Comp Neurol, 1999, 407: 404鈥?14 CrossRef
    25. Kosaka K, Kosaka T. Synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int, 2005, 80: 80鈥?0 CrossRef
    26. Puopolo M, Belluzzi O. Functional heterogeneity of periglomerular cells in the rat olfactory bulb. Europ J Neurosci, 1998, 10: 1073鈥?083 CrossRef
    27. Puopolo M, Bean B P, Raviola E. Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb. J Neurophysiol, 2005, 94: 3618鈥?627 CrossRef
    28. Pignatelli A, Kobayashi K, Okano H, / et al. Functional properties of dopaminergic neurones in the mouse olfactory bulb. J Physiol, 2005, 564: 501鈥?14 CrossRef
    29. McQuiston A R, Katz L C. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. J Neurophysiol, 2001, 86: 1899鈥?907
    30. Bardoni R, Magherini P C, Belluzzi O. Sodium current in periglomerular cells of frog olfactory bulb / in vitro. Brain Res, 1995, 703: 19鈥?5 CrossRef
    31. Puopolo M, Belluzzi O. Sodium current in periglomerular cells of rat olfactory bulb / in vitro. Neuroreport, 1996, 7: 1846鈥?850 CrossRef
    32. Bufler J, Zufall F, Franke C, / et al. Patch-clamp recordings of spiking and nonspiking interneurons from rabbit olfactory-bulb slices鈥攎embrane-properties and ionic currents. J Comp Physiol鈥擲ens Neural Behav Physiol, 1992, 170: 145鈥?52
    33. Arruda D, Publio R, Roque A C. Reduced compartmental model of the periglomerular cell of the mammalian olfactory bulb. In: The 18th Annual Computational Neuroscience Meeting, Berlin, Germany, 2009
    34. Davison A P, Feng J F, Brown D. A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull, 2000, 51: 393鈥?99 CrossRef
    35. Cadetti L, Belluzzi O. Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport, 2001, 12: 3117鈥?120 CrossRef
    36. Arruda D. The periglomerular cell of the olfactory bulb and its role in the odor processing: a computational model. Dissertation for Master鈥檚 Degree. Ribeirao Preto: University of Sao Paulo, 2010
    37. Ye X, Liang B, Ying N, / et al. The function of periglomerular cells on olfactory coding in a detailed electrophysiological model of vertebrate olfactory bulb. In: IEEE 5th International Conference on the Bio-Inspired Computing: Theories and Applications, Changsha, China, 2010
    38. Migliore M, Cook E P, Jaffe D B, / et al. Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol, 1995, 73: 1157鈥?168
    39. Destexhe A, Contreras D, Steriade M, / et al. In vivo, / in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci, 1996, 16: 169鈥?85
    40. Destexhe A, Neubig M, Ulrich D, / et al. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci, 1998, 18: 3574鈥?588
    41. Midtgaard J, Pinato G. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells. J Neurophysiol, 2005, 93: 1285鈥?294
    42. Pinato G, Midtgaard J. Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb. J Neurophysiol, 2003, 90: 3341鈥?351 CrossRef
    43. Branco T, Clark B A, Hausser M. Dendritic discrimination of temporal input sequences in cortical neurons. Science, 2010, 329: 1671鈥?675 CrossRef
    44. Destexhe A, Contreras D. Neuronal computations with stochastic network states. Science, 2006, 314: 85鈥?0 CrossRef
    45. Jones I L, Livi P, Lewandowska M K, / et al. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem, 2011, 399: 2313鈥?329 CrossRef
    46. Ling S, Gao T, Liu J, / et al. The fabrication of an olfactory receptor neuron chip based on planar multi-electrode array and its odor-response analysis. Biosens Bioelectron, 2010, 26: 1124鈥?128 CrossRef
  • 作者单位:Nan Ying (1) (2)
    Jian Tian (1) (2)
    SaiNan Yu (1) (2)
    Jing Zhou (3)
    ShuCai Ling (3)
    Ling Xia (1)
    XueSong Ye (1) (2)

    1. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
    2. Key Laboratory of Biomedical Engineering, Ministry of Education, Zhejiang University, Hangzhou, 310027, China
    3. School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310027, China
文摘
In recent years the evolution of olfactory bulb periglomerular cells, as well as the function of periglomerular cells in olfactory encoding, has attracted increasing attention. Studies of neural information encoding based on the analysis of simulation and modeling have given rise to electrophysiological models of periglomerular cells, which have an important role in the understanding of the biology of these cells. In this review we provide a brief introduction to the anatomy of the olfactory system and the cell types in the olfactory bulb. We elaborate on the latest progress in the study of the heterogeneity of periglomerular cells based on different classification criteria, such as molecular markers, structure, ion channels and action potentials. Then, we discuss the several existing electrophysiological models of periglomerular cells, and we highlight the problems and defects of these models. Finally, considering our present work, we propose a future direction for electrophysiological investigations of periglomerular cells and for the modeling of periglomerular cells and olfactory information encoding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700