Properties of Two-Component Bose–Einstein Condensates with Monopolar Interaction
详细信息    查看全文
  • 作者:Jinbin Li ; Yaxin Qiao
  • 关键词:BEC ; Phase separation ; GP equations ; DFM variational principle
  • 刊名:Journal of Low Temperature Physics
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:177
  • 期:3-4
  • 页码:165-177
  • 全文大小:405 KB
  • 参考文献:1. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008) CrossRef
    2. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005) CrossRef
    3. A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, Comparing contact and dipolar interactions in a Bose–Einstein condensate. Phys. Rev. Lett. 97, 250402 (2006) CrossRef
    4. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009) CrossRef
    5. D. O’Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, Bose–Einstein condensates with line-equation id-i-eq167"> \(1/r\) interatomic attraction: electromagnetically induced “gravity- Phys. Rev. Lett. 84, 5687 (2000) CrossRef
    6. S. Rau, J. Main, P. K?berle, G. Wunner, Pitchfork bifurcations in blood-cell-shaped dipolar Bose–Einstein condensates. Phys. Rev. A 81, 031605(R) (2010) CrossRef
    7. H. Cartarius, T. Fab?i?, J. Main, G. Wunner, Dynamics and stability of Bose–Einstein condensates with attractive line-equation id-i-eq169"> \(1/r\) interaction. Phys. Rev. A 78, 013615 (2008) CrossRef
    8. I. Papadopoulos, P. Wagner, G. Wunner, J. Main, Bose–Einstein condensates with attractive line-equation id-i-eq171"> \(1/r\) interaction: the case of self-trapping. Phys. Rev. A 76, 053604 (2007) CrossRef
    9. T. Ho, V. Shenoy, Binary mixtures of bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276 (1996) CrossRef
    10. H. Pu, N. Bigelow, Properties of two-species bose condensates. Phys. Rev. Lett. 80, 1130 (1998) CrossRef
    11. V. Schweikhard, I. Coddington, P. Engels, S. Tung, E.A. Cornell, Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004) CrossRef
    12. K.M. Mertes, J.W. Merrill, R. Carretero-González, D.J. Frantzeskakis, P.G. Kevrekidis, D.S. Hall, Nonequilibrium dynamics and superfluid ring excitations in binary Bose–Einstein condensates. Phys. Rev. A 99, 190402 (2007)
    13. S.B. Papp, J.M. Pino, C.E. Wieman, Tunable miscibility in a dual-species Bose–Einstein condensate. J. Chem. Phys. 101, 040402 (2008)
    14. Kui-Tian Xi, Jinbin Li, Da-Ning Shi, Phase separation of a two-component dipolar Bose–Einstein condensate in the quasi-one-dimensional and quasi-two-dimensional regime. Phys. Rev. A 84, 013619 (2011) CrossRef
    15. H. Saito, Y. Kawaguchi, M. Ueda, Ferrofluidity in a two-component dipolar Bose–Einstein condensate. Phys. Rev. Lett. 102, 230403 (2009) CrossRef
    16. G. Gligori?, A. Maluckov, M. Stepi?, L. Hadline-equation id-i-eq172"> \(\breve{z}\) ievski, B. Malomed, Transition to miscibility in linearly coupled binary dipolar Bose–Einstein condensates. Phys. Rev. A 82, 033624 (2010)
    17. S. Ronen, D.C.E. Bortolotti, J.L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap. Phys. Rev. A 74, 013623 (2006) CrossRef
    18. E.J. Heller, Classical S-matrix limit of wave packet dynamics. J. Chem. Phys. 65, 4979 (1976) CrossRef
    19. F. Gaussians, A very simple semiclassical approximation. J. Chem. Phys. 75, 2923 (1981) CrossRef
    20. P. Dirac, Note on exchange phenomena in the Thomas Atom. Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) CrossRef
    21. A.D. McLachlan, A variational solution of the time-dependent Schrodinger equation. Mol. Phys. 8, 39 (1964) CrossRef
    22. M.J.D. Powell, A hybrid method for nonlinear equations, in / Numerical methods for nonlinear algebraic equations, ed. by P. Rabinowitz (Gordon and Breach, London, 1970), pp. 87-14
    23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, / Numerical recipes in FORTRAN, 2nd edn. (Cambridge University Press, Cambridge, 1992), pp. 387-48
  • 作者单位:Jinbin Li (1)
    Yaxin Qiao (2) (3)

    1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing?, 211106, People’s Republic of China
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing?, 211106, People’s Republic of China
    3. Department of Reactor Engineering Research and Design, China Institute of Atomic Energy, Beijing?, 102413, People’s Republic of China
  • ISSN:1573-7357
文摘
We study two-component Bose–Einstein condensates (BECs) with electromagnetically induced attractive monopolar interaction, by means of the Dirac–Frenkel–McLachlan variational principle. The effectiveness of external trap potential, inter-component \(s\) -wave scattering, monopolar interaction, and particle numbers on the density of BECs is investigated. It is shown that the trap potential dramatically affects density profiles compared to the other three ingredients. Atoms with smaller intra-component \(s\) -wave scattering length will be squeezed out when monopolar interaction or particle numbers are small, whereas the atoms in the other component are pushed out instead when either parameter is large enough. This is in contrast to modulation of inter-component \(s\) -wave scattering length, which can not exchange the relative location of different components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700