Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting
详细信息    查看全文
  • 作者:Yichong Liu ; Yousong Gu ; Xiaoqin Yan ; Zhuo Kang ; Shengnan Lu ; Yihui Sun…
  • 关键词:ZnO ; ZnS ; Au ; photoanode ; photoelectrochemical water splitting
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:8
  • 期:9
  • 页码:2891-2900
  • 全文大小:2,271 KB
  • 参考文献:[1]Liu, J.; Zhang, H. C.; Tang, D.; Zhang, X.; Yan, L. K.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light. Chemcatchem 2014, 6, 2634鈥?641.CrossRef
    [2]Sun, S. M.; Wang, W. Z.; Jiang, D.; Zhang, L.; Li, X. M.; Zheng, Y. L.; An, Q. Bi2WO6 quantum dot鈥搃ntercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497鈥?506.CrossRef
    [3]Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921鈥?28.CrossRef
    [4]Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. p鈥搉 heterojunction photoelectrodes composed of Cu2O鈥搇oaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211鈥?220.CrossRef
    [5]Wheeler, D. A.; Wang, G. M.; Ling, Y. C.; Li, Y.; Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682鈥?702.CrossRef
    [6]Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978鈥?984.CrossRef
    [7]Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407鈥?13.CrossRef
    [8]Hou, J. G.; Yang, C.; Cheng, H. J.; Jiao, S. Q.; Takeda, O.; Zhu, H. M. High鈥損erformance p鈥揅u2O/n鈥揟aON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758鈥?768.CrossRef
    [9]Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self鈥損owered biosensing application. Biosens. Bioelectron. 2015, 64, 499鈥?04.CrossRef
    [10]Bai, Z. M.; Yan, X. Q.; Kang, Z.; Hu, Y. P.; Zhang, X. H.; Zhang, Y. Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 2014, 14, 392鈥?00.CrossRef
    [11]Kang, Z.; Yan, X. Q.; Wang, Y. F.; Bai, Z. M.; Liu, Y. C.; Zhang, Z.; Lin, P.; Zhang, X. H.; Yuan, H. G.; Zhang, X. J. et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all鈥搊xide p鈥搉 heterostructure for enhanced photoelectrochemical property and self鈥損owered biosensing application. Sci. Rep. 2015, 5, 7882.CrossRef
    [12]Zhang, X.; Wang, F.; Huang, H.; Li, H. T.; Han, X.; Liu, Y.; Kang, Z. H. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 2013, 5, 2274鈥?278.CrossRef
    [13]Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353鈥?64.CrossRef
    [14]Kaidashev, E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on c鈥損lane sapphire grown by multistep pulsed鈥搇aser deposition. Appl. Phys. Lett. 2003, 82, 3901鈥?903.CrossRef
    [15]Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647鈥?655.CrossRef
    [16]Dai, Y.; Zhang, Y; Bai, Y. Q.; Wang, Z. L. Bicrystalline zinc oxide nanowires. Chem. Phys. Lett. 2003, 375, 96鈥?01.CrossRef
    [17]Dai, Y.; Zhang, Y.; Wang, Z. L.; The octa鈥搕win tetraleg ZnO nanostructures. Solid State Commun. 2003, 126, 629鈥?33.CrossRef
    [18]Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au鈥揵ased Schottky junction for enhanced photoresponse of a flexible self鈥損owered UV detector. ACS Appl. Mater. Interfaces. 2014, 6, 14116鈥?4122.CrossRef
    [19]Pu, Y. C.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Au nanostructure鈥揹ecorated TiO2 nanowires exhibiting photoactivity across entire UV鈥搗isible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817鈥?823.CrossRef
    [20]Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14鈥?0.CrossRef
    [21]Azevedo, J.; Steier, L.; Dias, P.; Stefik, M.; Sousa, C. T.; Araujo, J. P.; Mendes, A.; Graetzel, M.; Tilley, S. D. On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ. Sci. 2014, 7, 4044鈥?052.CrossRef
    [22]Zhang, X.; Liu, Y.; Lee, S. T.; Yang, S. H.; Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow鈥損hoton鈥揺ffect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 1409鈥?419.CrossRef
    [23]Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133鈥?146.CrossRef
    [24]Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Hou, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X鈥搑ay absorption approach to electronic structures. ACS Nano 2012, 6, 7362鈥?372.CrossRef
    [25]Wu, M.; Chen, W. J.; Shen, Y. H.; Huang, F. Z.; Li, C. H.; Li, S. K. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15052鈥?5060.
    [26]Zhang, X., Y.; Liu, Y.; Kang, Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high鈥損erformance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480鈥?489.CrossRef
    [27]Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic鈥搈etal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911鈥?21.CrossRef
    [28]Hou, W.; Cronin, S. B. A review of surface plasmon resonance鈥揺nhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612鈥?619.CrossRef
    [29]Guo, P. H.; Jiang, J. G.; Shen, S. H.; Guo, L. J. ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance. Inter. J. Hydrogen Energ. 2013, 38, 13097鈥?3103.CrossRef
    [30]Jiang, J. G.; Wang, M.; Ma, L. J.; Chen, Q. Y.; Guo, L. J. Synthesis of uniform ZnO/ZnS/CdS nanorod films with ion鈥揺xchange approach and photoelectrochemical performances. Inter. J. Hydrogen Energ. 2013, 38, 13077鈥?3083.CrossRef
    [31]Kushwaha, A.; Aslam, M. ZnS shielded ZnO nanowire photoanodes for efficient water splitting. Electrochimica Acta 2014, 130, 222鈥?31.CrossRef
    [32]Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods鈥揵ased self鈥損owered photodetector by piezotronic interface engineering. Nano Energ. 2014, 9, 237鈥?44.CrossRef
    [33]Chen, X.; Bai, Z. M.; Yan, X. Q.; Yuan, H. G.; Zhang, G. J.; Lin, P.; Zhang, Z.; Liu, Y. C.; Zhang, Y. Design of efficient dye鈥搒ensitized solar cells with patterned ZnO鈥揨nS core鈥搒hell nanowire array photoanodes. Nanoscale 2014, 6, 4691鈥?697.CrossRef
    [34]Mallick, K.; Wang, Z. L.; Pal, T. Seed鈥搈ediated successive growth of gold particles accomplished by UV irradiation: A photochemical approach for size鈥揷ontrolled synthesis. J. Photoch. Photobio. A 2001, 140, 75鈥?0.CrossRef
    [35]Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen鈥搈odified TiO2 nanowires. Nano Lett. 2012, 12, 26鈥?2.CrossRef
    [36]Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129鈥?133.CrossRef
    [37]Schrier, J.; Demchenko, D. O.; Wang, L. W. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007, 7, 2377鈥?282.CrossRef
    [38]Liu, L. Z.; Chen, Y. Q.; Guo, T. B.; Zhu, Y. Q.; Su, Y.; Jia, C.; Wei, M. Q.; Cheng, Y. F. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: Morphology evolution and its effect on dye鈥搒ensitized solar cell. ACS Appl. Mater. Interfaces 2012, 4, 17鈥?3.CrossRef
    [39]Liu, W.; Wang, R. M.; Wang, N. From ZnS nanobelts to ZnO/ZnS heterostructures: Microscopy analysis and their tunable optical property. Appl. Phys. Lett. 2010, 97, 041916.CrossRef
  • 作者单位:Yichong Liu (1)
    Yousong Gu (1)
    Xiaoqin Yan (1)
    Zhuo Kang (1)
    Shengnan Lu (1)
    Yihui Sun (1)
    Yue Zhang (1) (2)

    1. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
    2. Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
We developed and demonstrated a ZnO/ZnS/Au composite photoanode with significantly enhanced photoelectrochemical water-splitting performance, containing a ZnS interlayer and Au nanoparticles. The solar-to-hydrogen conversion efficiency of this ZnO/ZnS/Au heterostructure reached 0.21%, 3.5 times that of pristine ZnO. The comparison of the incident photon-to-current efficiency (IPCE) and the photoresponse in the white and visible light regions further verified that the enhancement resulted from contributions of both UV and visible light. The modification of the Au NPs was shown to improve the photoelectrochemical (PEC) performance to both UV and visible light, as modification encouraged effective surface passivation and surface-plasmonresonance effects. The ZnS interlayer favored the movement of photogenerated electrons under UV light and hot electrons under visible light, causing their injection into ZnO; this simultaneously suppressed the electron-hole recombination at the photoanode-electrolyte interface. The optimized design of the interlayer within plasmonic metal/semiconductor composite systems, as reported here, provided a facile and compatible photoelectrode configuration, enhancing the utilization efficiency of incident light for photoelectrochemical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700