Effect of silicon on grain yield of rice under cadmium-stress
详细信息    查看全文
  • 作者:Hongmei Lin ; Changxun Fang ; Yingzhe Li ; Weiwei Lin…
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:38
  • 期:7
  • 全文大小:1,243 KB
  • 刊物主题:Plant Physiology; Plant Genetics & Genomics; Plant Biochemistry; Plant Pathology; Plant Anatomy/Development; Agriculture;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-1664
  • 卷排序:38
文摘
Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 (Lsi1), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistance to Cadmium (Cd)-stress of the wild-type (WT) and Lsi1-transgenic Lemont rice lines under Cd-stress were examined in an attempt to better understand the mechanism associated with the Si-addition, Cd-stress, and rice physiology. Si-fertilization significantly reduced the Cd-content in rice under Cd-stress. The effect was most significant in the Lsi1-overexpression transgenic Lemont rice (Lsi1-OE line) under high Cd-stress. Conversely, Cd in soil lowered the Si-uptake of the plants indicating a significant interaction between the two elements. During the grain-filling period, Cd-stress greatly reduced the chlorophyll content and Pn of the rice resulting in a diminished grain output. However, Lsi1-OE line with a higher chlorophyll content and Pn than either WT or Lsi1-RNAi transgenic Lemont rice (Lsi1-RNAi line) maintained a high photo-assimilate transportation for high yield potential. At harvest, Lsi1-OE line contained more Si and less Cd than WT, whereas the Lsi1-RNAi line showed an opposite result. In general, Cd-stress reduced, while Si-fertilization significantly increased, the grain yield on rice. However, no significant difference on the grain yields existed between WT and Lsi1-RNAi line. This might be due to a compensation effect generated by Lsi1-RNAi line. It appeared that Si in the soil, as well as the enhancing or inhibiting Lsi1 expression and the resistance to Cd-toxicity of the plants, could significantly affect the rice yield making alternations on these factors a plausible approach for production improvement.KeywordsRice (Oryza sativa)SiliconCadmiumLsi1PhotosynthesisGrain yield

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700