Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces
详细信息    查看全文
  • 作者:Yongbo Deng (1)
    Zhenyu Liu (1)
    Yihui Wu (1)
  • 关键词:Topology optimization ; Navier–Stokes flows ; Body force ; Artificial friction force ; Power ; law approach ; Continuous adjoint method
  • 刊名:Structural and Multidisciplinary Optimization
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:47
  • 期:4
  • 页码:555-570
  • 全文大小:1220KB
  • 参考文献:1. Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems, Struct Multidisc Optim 35:175-80 CrossRef
    2. Abdelwahed M, Hassine M (2009) Topological optimization method for a geometric control problem in Stokes flow. Appl Numer Math 59:1823-838 CrossRef
    3. Akl W, El-Sabbagh A, Al-Mitani K, Baz A (2008) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46:2060-074 CrossRef
    4. Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363-93 CrossRef
    5. Amstutz S (2005) The topological asymptotic for the Navier–Stokes equations. ESAIM Contr Op Ca Va 11:401-25 CrossRef
    6. Amstutz S (2006) Topological sensitivity analysis for some nonlinear PDE systems. J Math Pures Appl 85:540-57
    7. Andreasen CS, Gersborg AR, Sigmund O (2008) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61:498-13 CrossRef
    8. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM
    9. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge
    10. Bendsoe MP (2000) Optimal shape design as a material distribution problem. Struct Optim 1:193-02 CrossRef
    11. Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197-24 CrossRef
    12. Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635-54 CrossRef
    13. Bendsoe MP, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer
    14. Borrvall T, Petersson J (2003) Topology optimization of fluid in Stokes flow. Int J Numer Methods Fluids 41:77-07 CrossRef
    15. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:344-62 CrossRef
    16. Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79:1284-308 CrossRef
    17. Deng Y, Liu Z, Zhang P, Wu Y, Korvink JG (2010) Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. In: Proceedings IEEE international conference on Micro Electro MechanicalSystems (MEMS), pp?67-0
    18. Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011a) Topology optimization of unsteady incompressible Navier–Stokes flow. J Comput Phys 230:6688-708 CrossRef
    19. Deng Y, Wu Y, Xuan M, Korvink JG, Liu Z (2011b) Dynamic optimization of valveless micropump. In: Proceedings IEEE international conference on solid-state sensors, actuators, and microsystems (transducers), pp?442-45
    20. Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices. doi:10.1007/s10544-012-9672-5
    21. Duan X, Ma Y, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487-99 CrossRef
    22. Duhring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557-75 CrossRef
    23. Elman HC, Silvester DJ, Wathen AJ (2006) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford
    24. Evgrafov A (2006) Topology optimization of slightly compressible fluids. ZAMM 86:46-2 CrossRef
    25. Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 29:1-2 CrossRef
    26. Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006a) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31:251-59 CrossRef
    27. Gersborg-Hansen A, Berggren M, Dammann B (2006b) Topology optimizatiopn of mass distribution problems in Stokes flow. Solid Mech Appl 137:365-74 CrossRef
    28. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393-15 CrossRef
    29. Guest JK, Proevost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461-84 CrossRef
    30. Guillaume PH, Idris KS (2004) Topological sensitivity and shape optimization for the Stokes equations. SIAM J Control Optim 43:1-1 CrossRef
    31. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer
    32. Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229-253
    33. Liu Z, Korvink JG (2008) Adaptive moving mesh level set method for structure optimization. Eng Optim 40:529-58 CrossRef
    34. Liu Z, Deng Y, Lin S, Xuan M (2011a) Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng Optim. doi:10.1080/0305215X.2011.652100
    35. Liu Z, Gao Q, Zhang P, Xuan M, Wu Y (2011b) Topology optimization of fluid channels with flow rate equality constraints. Struct Multidisc Optim 44:31-7 CrossRef
    36. Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216-29
    37. Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64-9 CrossRef
    38. Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids. Oxford
    39. Nocedal J, Wright SJ (1998) Numerical optimization. Springer
    40. Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71:1261-296 CrossRef
    41. Novotny AA, Feijoo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192:803-29 CrossRef
    42. Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75:1- CrossRef
    43. Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975-001 CrossRef
    44. Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12-9 CrossRef
    45. Panton RL (1984) Incompressible flow. Wiley
    46. Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340-350 CrossRef
    47. Pironneau O (1973) On optimum profiles in stokes flow. J Fluid Mech 59:117-28 CrossRef
    48. Pironneau O (1974) On optimum design in fluid mechanics. J Fluid Mech 64:97-10 CrossRef
    49. Rozvany GIN (1994) Shape and layout optimization of structural systems and optimality criteria methods. Springer
    50. Rozvany GIN (1997) Topology optimization in structural mechanics. Springer
    51. Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90-08 CrossRef
    52. Saxena A (2005) Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct Multidisc Optim 30:477-90 CrossRef
    53. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:495-26 CrossRef
    54. Sigmund O (2001) A 99-line topology optimization code written in Matlab. Struct Multidisc Optim 21:120-27 CrossRef
    55. Sigmund O, Hougaard KG (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904 CrossRef
    56. Sokolowski J, Zochowski A (1999a) On the topological derivative in shape optimization. SIAM J Control Optim 37:1241-272 CrossRef
    57. Sokolowski J, Zochowski A (1999b) Topological derivatives for elliptic problems. Inverse Problems 15:123-34 CrossRef
    58. Srinath DN, Mittal S (2010) An adjoint method for shape optimization in unsteady viscous flows. J Comput Phys 229:1994-008 CrossRef
    59. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359-73 CrossRef
    60. Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. In: 6th congresses of structural and multidisciplinary optimization
    61. Wang MY, Wang X, Guo D (2003) A level set method for structural optimization. Comput Methods Appl Mech Eng 192:227-46 CrossRef
    62. Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69:1374-404 CrossRef
    63. Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Engng 82:805-42
    64. Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178-0195 CrossRef
    65. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197-24 CrossRef
  • 作者单位:Yongbo Deng (1)
    Zhenyu Liu (1)
    Yihui Wu (1)

    1. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China
  • ISSN:1615-1488
文摘
This paper presents the topology optimization method for the steady and unsteady incompressible Navier–Stokes flows driven by body forces, which typically include the constant force (e.g. the gravity) and the centrifugal and Coriolis forces. In the topology optimization problem, the artificial friction force with design variable interpolated porosity is added into the Navier–Stokes equations as the conventional method, and the physical body forces in the Navier–Stokes equations are penalized using the power-law approach. The topology optimization problem is analyzed by the continuous adjoint method, and solved by the finite element method in conjunction with the gradient based approach. In the numerical examples, the topology optimization of the fluidic channel, mass distribution of the flow and local velocity control are presented for the flows driven by body forces. The numerical results demonstrate that the presented method achieves the topology optimization of the flows driven by body forces robustly.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700