Optimal error growth of South Asian monsoon forecast associated with the uncertainties in the sea surface temperature
详细信息    查看全文
  • 作者:Siraj Ul Islam ; Youmin Tang ; Peter L. Jackson
  • 关键词:Predictability and optimal error growth ; South Asian monsoon ; The tropical oceans ; Ensemble prediction
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:5-6
  • 页码:1953-1975
  • 全文大小:9,738 KB
  • 参考文献:Acharya N, Kar SC, Mohanty UC, Kulkarni MA, Dash SK (2011) Performance of GCMs for seasonal prediction over India—a case study for 2009 monsoon. Theor Appl Climatol 105:505–520CrossRef
    Anderson J, Hoar T, Raeder K, Liu H, Collins N, Torn R, Avellano A (2009) The data assimilation research testbed: a community facility. Bull Am Meteorol Soc 90:1283–1296CrossRef
    Annamalai H, Liu P (2005) Response of the Asian summer monsoon to changes in El Niño properties. Q J R Meteorol Soc 131:805–831CrossRef
    Buizza R, Palmer TN (1995) The singular vector structure of the atmosphere global circulation. J Atmos Sci 52:1434–1456CrossRef
    Charabi Y, Abdul-Wahab SA (2009) Synoptic aspects of the summer monsoon of southern Oman and its global teleconnections. J Geophys Res 114:D07107. doi:10.​1029/​2008JD010234
    Charney JG, Shukla J (1981) Predictability of monsoons. In: Lighthill J, Pearce RP (eds) Monsoon dynamics. Cambridge University Press, pp 99–109
    Chen Y-Q, Battisti DS, Palmer TN, Barsugli J, Sarachik ES (1997) A study of the predictability of tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: the role of the annual cycle and the ENSO cycle. Mon Weather Rev 125:831–845CrossRef
    Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736CrossRef
    Cheng Y, Tang Y, Zhou X, Jackson P, Chen D (2010) Further analysis of singular vector and ENSO predictability in the Lamont model—part I: singular vector and the control factors. Clim Dyn 35:807–826. doi:10.​1007/​s00382-009-0595-7 CrossRef
    Chowdary J, Xie S-P, Lee JY, Kosaka Y, Wang B (2010) Predictability of summer Northwest Pacific climate in eleven coupled model hindcasts: local and remote forcing. J Geophys Res 115:D22121. doi:10.​1029/​2010JD014595 CrossRef
    Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143CrossRef
    Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London. ISBN 0412042312CrossRef
    Fu X, Wang B, Bao Q, Liu P, Lee J-Y (2009) Impacts of initial conditions on monsoon intraseasonal forecasting. GRL 36:L08801
    Fu X, Wang B, Lee J-Y, Wang W, Gao L (2011) Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon Weather Rev 139:2572–2592CrossRef
    Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction—Why yet another failure? Curr Sci 88:1389–1400
    Gent P, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M, Worley P, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRef
    Griffies SM, Winton M, Samuels B, Danabasoglu G, Yeager S, Marsland S, Drange H, Bentsen M (2012) Datasets and protocol for the CLIVAR WGOMD coordinated Ocean-sea ice reference experiments (COREs), WCRP report no. 21/2012, p 21
    Hawkins ED, Sutton R (2010) Estimating climatically relevant singular vectors for decadal predictions of the Atlantic Ocean. J Clim 24:109–123. doi:10.​1175/​2010JCLI3579.​1 CrossRef
    Houtekamer PL, Mitchell Herschel L, Pellerin Gérard, Buehner Mark, Charron Martin, Spacek Lubos, Hansen Bjarne (2005) Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon Weather Rev 133:604–620. doi:10.​1175/​MWR-2864.​1 CrossRef
    Hunke EC, Lipscomb WH (2008) CICE: the Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Report LA-CC-06-012
    Islam S, Tang Y, Jackson P (2013) Asian monsoon simulations by community climate models CAM4 and CCSM4. Clim Dyn. doi:10.​1007/​s00382-013-1752-6
    Jiang X, Yang S, Li Y, Kumar A, Liu X, Zuo Z, Jha B (2013) Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J Clim 26:3708–3727. doi:10.​1175/​JCLI-D-12-00437.​1 CrossRef
    Jin EK, Kinter JL, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31(6):647–664. doi:10.​1007/​s00382-008-0397-3 CrossRef
    Kleeman R, Tang Y, Moore AM (2003) The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J Atmos Sci 60:2856–2868CrossRef
    Kosaka Y, Chowdary JS, Xie S-P, Min Y-M, Lee J-Y (2012) Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J Clim 25:7574–7589CrossRef
    Kousky VE, Kayano MT (1994) Principal modes of outgoing longwave radiation and 250 mb circulation for the South American sector. J Clim 7:1131–1143CrossRef
    Kulkarni MA, Acharya N, Kar SC, Mohanty UC, Tippett MK, Robertson AW, Luo JJ, Yamagata Toshio (2011) Probabilistic prediction of indian summer monsoon rainfall using global climate models. Theor Appl Climatol 107(3–4):441–450. doi:10.​1007/​s00704-011-0493-x
    Leith CE (1974) Theoretical skill of Montecarlo forecasts. Mon Weather Rev 102:409–418CrossRef
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141CrossRef
    Meehl GA, Arblaster JM (2002) Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J Clim 15:923–944CrossRef
    Molteni F, Palmer TN (1993) Predictability and finite time instability of the northern winter circulation. Q J R Meteorol Soc 119:269–298CrossRef
    Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc 122:1405–1446CrossRef
    Moore AM, Mariano AJ (1999) The dynamics of error growth and predictability in a model of the Gulf Stream. Part I: Singular vector analysis. J Phys Oceanogr 29:158–176CrossRef
    Moron V (1995) Variability of the African convection centre as viewed by outgoing longwave radiation records and relationships with sea surface temperature patterns. Int J Climatol 15:25–34CrossRef
    Neale RB, Jochum M, Richter JH (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRef
    Neale RB, Richter JH, Andrew JC, Park S, Lauritzen PH, Gettelman A, Williamson DL, Rasch PJ, Vavrus SJ, Taylor MA, Collins WD, Zhang M, Lin S (2010) Description of the NCAR community atmosphere model (CAM 4.0). NCAR Technical Note, NCAR/TN-485+STR. National Center for Atmospheric Research, Boulder, Colorado
    Nigam S (1994) On the dynamical basis for the Asian summer monsoon rainfall-El Niño relationship. J Clim 7:1750–1771CrossRef
    Palmer TN (2000) Predicting uncertainty in forecasts of weather and climate. Rep Prog Phys 63:71–116CrossRef
    Palmer TN, Zanna L (2013) Singular vectors, predictability and ensemble forecasting for weather and climate. J Phys A Math Theor 46:254018. doi:10.​1088/​1751-8113/​46/​25/​254018 CrossRef
    Pokhrel S, Chaudhari HS, Saha SK, Dhakata A, Yadav RK, Salenke K, Mahaptra S, Rao SA (2012) ENSO. Clim Dyn, IOD and Indian summer monsoon in the NCEP climate forecast system. doi:10.​1007/​s00382-012-1349-5
    Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.​1029/​2002JD002670 CrossRef
    Richter J, Rasch P (2008) Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J Clim 21:1487–1499CrossRef
    Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363
    Schmetz J, Liu Q (1988) Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J Geophys Res 93(D9):11192–11204CrossRef
    Shukla J (1981) Dynamical predictability of monthly means. J Atmos Sci 38:2547–2572CrossRef
    Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731CrossRef
    Shukla J, Paolino DA (1983) The southern oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837CrossRef
    Sikka (1980) Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Indian Acad Sci (E&P Sci) 89(2):179–195
    Singh A, Acharya N, Mohanty UC, Robertson AW, Mishra G (2012) On the predictability of Indian Summer Monsoon Rainfall in general circulation model at different lead time. Dyn Atmos Oceans 58:108–127CrossRef
    Slingo JM, Annamalai H (2000) 1997: the El Niño of the century and the response of the Indian summer monsoon. Mon Weather Rev 128:1778–1797CrossRef
    Smith RD, Gent P (2002) Reference manual for the parallel ocean program (POP). Los Alamos unclassified report LA-UR-02-2484
    Sohn SJ, Tam CY, Ashok K, Ahn JB (2012) Quantifying the reliability of precipitation datasets for monitoring large-scale East Asian precipitation variations. Int J Climatol. doi:10.​1002/​joc.​2380
    Tang Y, Deng Z (2011) ENSO bred vectors and predictability in a hybrid coupled model from 1881–2000. J Clim 24(1):298–314CrossRef
    Tang Y, Kleeman R, Moore A (2005) On the reliability of ENSO dynamical predictions. J Atmos Sci 62(6):1770–1791CrossRef
    Tang Y, Kleeman R, Miller S (2006) ENSO predictability of a fully coupled GCM model using singular vector analysis. J Clim 19:3361–3377CrossRef
    Toth Z, Kalnay E (1993) Ensemble forecasting and NMC: the generation of perturbations. Bull Am Meteorol Soc 74:2317–2330CrossRef
    Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319CrossRef
    Vavrus S, Waliser D (2008) An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J Clim 21:5673–5687CrossRef
    Wang B et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117. doi:10.​1007/​s00382-008-0460-0 CrossRef
    Xue Y, Cane MA, Zebiak SE (1997) Predictability of a coupled model of ENSO using singular vector analysis. Part I: optimal growth in seasonal background and ENSO cycles. Mon Weather Rev 125:2043–2056CrossRef
    Yang S, Lau K-M (2006) Interannual variability of the Asian monsoon. In: Wang B (ed) the Asian monsoon. Praxis, Moscow, pp 259–293CrossRef
    Zhou X, Tang Y, Deng Z (2007) The impact of nonlinear atmosphere on the fastest error growth of ENSO prediction. Clim Dyn. doi:10.​1007/​s00382-007-0302-5
  • 作者单位:Siraj Ul Islam (1)
    Youmin Tang (1)
    Peter L. Jackson (1)

    1. Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
A recently developed method of climatic relevant singular vectors (CSVs) is applied to an atmospheric general circulation model (CAM4) to investigate the optimal error growth of the South Asian monsoon (SAM) seasonal prediction due to uncertainties in initial conditions of the sea surface temperature (SST). Emphasis is placed on the investigation of the optimal error growth of SAM seasonal forecast due to the SST uncertainties in the Indian and the equatorial Pacific Oceans. It is found that the uncertainties in the Indian Ocean can result in much larger error growth of SAM seasonal prediction than those in equatorial Pacific Ocean. Most of the CSV patterns over the Indian Ocean resembled a dipole-like structure with opposite signs spanning the northern and southern Indian Ocean. It is seen that the CSVs error growth rate changes significantly depending on the initial states whereas the CSVs patterns are insensitive to the initial conditions. The CSV patterns and error growth rates, calculated using CAM4, are also compared against those using coupled model CCSM4, indicating that the CSVs patterns from CAM4 are similar to those from CCSM4 coupled model while the error growth rate is lower in CAM4 than in CCSM4. Ensemble summer hindcasts, for the period from 2000 to 2009 over Indian Ocean, are constructed by the CSVs. For the purpose of comparison, ensemble forecasts constructed by the time lag ensemble (TLE) method are also conducted. It is found that the ensemble mean prediction by CSVs has a better skill than both the prediction by TLE and by the control run, in particular for predictions longer than 3 months, indicating the merit of CSV for SAM ensemble forecast.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700