Effect of Chromium on Oxidation in Wear of Surface Nanocrystalline Martensite Steel
详细信息    查看全文
  • 作者:Youming Chen ; Youyun Tang ; Hao Zhang ; Licai Fu
  • 关键词:Martensite steel ; Nanocrystalline ; Diffusion ; Oxidation ; Wear behavior
  • 刊名:Tribology Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:61
  • 期:1
  • 全文大小:1,119 KB
  • 参考文献:1.Meyers, M.A., Mishra, A., Benson, D.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006). doi:10.​1016/​j.​pmatsci.​2005.​08.​003 CrossRef
    2.Sriraman, K.R., Raman, S., Seshadri, S.K.: Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni–W alloys. Mater. Sci. Eng. A 418, 303–311 (2006). doi:10.​1016/​j.​msea.​2005.​11.​046 CrossRef
    3.Yang, J., Ma, J., Bi, Q., Liu, W., Xun, Q.: Tribological properties of Fe3Al material under water environment. Mater. Sci. Eng. A 490, 90–94 (2008). doi:10.​1016/​j.​msea.​2008.​01.​024 CrossRef
    4.Wang, L., Ma, J., Yang, J., Bi, Q., Fu, L., Liu, W.: Dry-sliding tribological properties of a nano-eutectic Fe1.87C0.13 alloy. Wear 268, 991–995 (2010). doi:10.​1016/​j.​wear.​2009.​12.​028 CrossRef
    5.Amanov, A., Penkov, O., Pyun, Y., Kim, D.: Effects of ultrasonic nanocrystalline surface modification on the tribological properties of AZ91D magnesium alloy. Tribol. Int. 54, 106–113 (2012). doi:10.​1016/​j.​triboint.​2012.​04.​024 CrossRef
    6.Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953). doi:10.​1063/​1.​1721448 CrossRef
    7.Fu, L., Yang, J., Bi, Q., Zeng, H., Liu, W.: Sliding wear behaviour of nanocrystalline Fe88Si12 alloy under low load and speed. Tribol. Lett. 48, 325–329 (2012). doi:10.​1007/​s11249-012-0028-3 CrossRef
    8.Sun, H.Q., Shi, Y.N., Zhang, M.: Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266, 666–670 (2009). doi:10.​1016/​j.​wear.​2008.​08.​004 CrossRef
    9.Henry, S.: Friction, Lubrication, and Wear Technology. ASM Handbook, Russell Township (1992)
    10.Myung, J., Lim, H., Kang, S.: Oxidation behavior of nanocrystalline Al alloys containing 5 and 10 at.% Ti. Oxid. Met. 51, 79–95 (1999). doi:10.​1023/​A:​1018802218912 CrossRef
    11.Wang, F.: The effect of nanocrystallization on the selective oxidation and adhesion of A12O3 scales. Oxid. Met. 48, 215–224 (1997). doi:10.​1007/​BF01670500 CrossRef
    12.Han, Z., Lu, L., Zhang, H.W., Yang, Z.Q., Wang, F.H., Lu, K.: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261–275 (2005). doi:10.​1007/​s11085-005-4381-6 CrossRef
    13.Cui, X.H., Wang, S.Q., Wang, F., Chen, K.M.: Research on oxidation wear mechanism of the cast steels. Wear 265, 468–476 (2008). doi:10.​1016/​j.​wear.​2007.​11.​015 CrossRef
    14.Würschum, R., Herth, S., Brossmann, U.: Diffusion in nanocrystalline metals and alloys-a status report. Adv. Eng. Mater. 5, 365–372 (2003). doi:10.​1002/​adem.​200310079 CrossRef
    15.Chadwick, A.V.: Diffusion in nanocrystalline solids. In: Kärger, J., Grinberg, F., Heitjans, P. (eds.) Diffusion Fundamentals, pp. 204–225. Leipziger Universitätsverlag, Leipzig (2005)
    16.Wei, Y.J., Bower, A.F., Gao, H.J.: Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741–1752 (2008). doi:10.​1016/​j.​actamat.​2007.​12.​028 CrossRef
    17.Chakravartya, S., Jiang, M., Tietzeb, U., Lottb, D., Geuec, T., Stahnc, J., Schmidt, H.: Migration and annihilation of non-equilibrium point defects in sputter deposited nanocrystalline alpha-Fe films. Acta Mater. 59, 5568–5573 (2011). doi:10.​1016/​j.​actamat.​2011.​05.​029 CrossRef
    18.Horváth, J., Birringer, R., Gleiter, H.: Diffusion in nanocrystalline material. Solid State Commun. 62, 319–322 (1987). doi:10.​1016/​0038-1098(87)90989-6 CrossRef
    19.Wang, H., Wang, Z., Lu, K.: Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment. Acta Mater. 60, 1762–1770 (2012). doi:10.​1016/​j.​actamat.​2011.​12.​016 CrossRef
    20.Ma, G., Xu, B., Wang, H., Si, H., Yang, D.: Effect of surface nanocrystallization on the tribological properties of 1Cr18Ni9Ti stainless steel. Mater. Lett. 65, 1268–1271 (2011). doi:10.​1016/​j.​matlet.​2011.​01.​041 CrossRef
    21.Fu, L., Li, D.: Surface nanocrystalline of martensite steel induced by sandblasting at high temperature. Adv. Eng. Mater. 15, 476–479 (2013). doi:10.​1002/​adem.​201200252 CrossRef
    22.Kragel’skii, I.V., Silin, A.: The design of low-wear friction materials. Mech. Compos. Mater. 5, 245–248 (1969). doi:10.​1007/​BF00854764
    23.Fu, L., Yang, J., Bi, Q., Liu, W.: Dry reciprocal sliding wear behavior of nanocrystalline Fe88Si12 alloy. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227, 79–83 (2013). doi:10.​1177/​1350650112450802​ CrossRef
    24.Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). doi:10.​1016/​j.​apsusc.​2007.​09.​063 CrossRef
    25.Chookajorn, T., Murdoch, H.A., Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951–954 (2012). doi:10.​1126/​science.​1224737 CrossRef
    26.Koch, C.C., Ovidko, I.A., Seal, S., Veprek, S.: Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, Cambridge (2007)CrossRef
    27.Li, H.Q., Ebrahimi, F.: An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater. 51, 3905–3913 (2003). doi:10.​1016/​S1359-6454(03)00215-5 CrossRef
    28.Sarkar, S., Bansal, C.: Atomic disorder–order phase transformation in nanocrystalline Fe–Al. J. Alloys Compd. 334, 135–142 (2002). doi:10.​1016/​S0925-8388(01)01744-3 CrossRef
    29.Wang, Z.B., Lu, J., Lu, K.: Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment. Acta Mater. 53, 2081–2089 (2005). doi:10.​1016/​j.​actamat.​2005.​01.​020 CrossRef
  • 作者单位:Youming Chen (1)
    Youyun Tang (2)
    Hao Zhang (1)
    Licai Fu (3)

    1. Engineering Research Center of Advanced Mining Equipment, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
    2. Soil and Fertilizer Institute, Hunan Academy of Agricultural Science, Changsha, China
    3. College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Surfaces and Interfaces and Thin Films
    Theoretical and Applied Mechanics
    Physical Chemistry
    Nanotechnology
  • 出版者:Springer Netherlands
  • ISSN:1573-2711
文摘
The friction and wear behavior of surface nanocrystalline martensite steel has been investigated. The wear rate of nanocrystalline martensite ranges from 2 × 10−5 to 4.5 × 10−5 mm3/m at an applied load of 2–15 N. It is one order of magnitude lower than its ultrafine grain counterpart. The surface hardness of both nanocrystalline and ultrafine martensite steels is about 7.0 GPa. It is unexpected according to Archard’s equation that the wear rate has an inversely linear relationship to hardness. The investigations indicate that the diffusion rate of Cr towards a worn surface dramatically increases as the average grain size of martensite steel decreases to 30 nm. This leads to the formation of Fe2O3, CrO3 and FeCr2O4 films on the worn surface and an improvement in the wear resistance of martensite steel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700