Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3
详细信息    查看全文
  • 作者:Congcong Ding (1) (2)
    Su Feng (1)
    Wencai Cheng (1)
    Jie Zhang (1)
    Xiaolong Li (2)
    Jiali Liao (2)
    Yuanyou Yang (2)
    Zhu An (2)
    Shunzhong Luo (3)
    Jijun Yang (2)
    Jun Tang (2)
    Ning Liu (2)
  • 关键词:Biosorption behavior ; Biosorption mechanisms ; Thorium ; PIXE
  • 刊名:Journal of Radioanalytical and Nuclear Chemistry
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:301
  • 期:1
  • 页码:237-245
  • 全文大小:
  • 参考文献:1. Lloyd JR, Renshaw JC (2005) Microbial transformations of radionuclides: fundamental mechanisms and biogeochemical implications. Met Ions Biol Syst 44:205-40
    2. De Marsily G (1988) Radionuclide migration in the geosphere: an overview. Radiochim Acta 44:159-64
    3. Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285-95 CrossRef
    4. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243-257 CrossRef
    5. Francis AJ, Dodge CJ, Gillow JB (2008) Reductive dissolution of Pu(IV) by / Clostridium sp. under anaerobic conditions. Environ Sci Technol 42(7):2355-360 CrossRef
    6. Behrends T, Krawczyk-B?rsch E, Arnold T (2011) Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Appl Geochem 27:453-62 CrossRef
    7. Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G (2001) Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie Van Leeuwenhoek 79:149-61 CrossRef
    8. Geissler A, Selenska-Pobell S (2005) Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3:275-85 CrossRef
    9. Francis A, Dobbs S, Nine B (1980) Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites. Appl Environ Microbiol 40:108-13
    10. Geoffrey M, Gadd G (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3-9 CrossRef
    11. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of / Bacillus sphaericus JG-A12. Appl Environ Microbiol 71(9):5532-543 CrossRef
    12. Nedelkova M, Merroun ML, Rossberg A, Hennig C, Selenska-Pobell S (2007) Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium. FEMS Microbiol Ecol 59:694-05 CrossRef
    13. Sar P, D’Souza SF (2002) Biosorption of thorium (IV) by a / Pseudomonas biomass. Biotechnol Lett 24:239-43 CrossRef
    14. Landa E (2003) Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments. J Radioanal Nucl Chem 255:559-63 CrossRef
    15. Li W, Yu L, He Q, Wu Y, Yuan D, Cao J (2005) Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in column-built leached soil–limestone karst systems. Appl Soil Ecol 29:274-81 CrossRef
    16. Simonoff M, Sergeant C, Poulain S, Pravikoff MS (2007) Microorganisms and migration of radionuclides in environment. C R Chim 10:1092-107 CrossRef
    17. Andres Y, Abdelouas A, Grambow B (2002) Microorganisms effects on radionuclides migration. Radioprotection 37:1 CrossRef
    18. Trellue HR, Bathke CG, Sadasivan P (2011) Neutronics and material attractiveness for PWR thorium systems using Monte Carlo techniques. Prog Nucl Energy 53:698-07 CrossRef
    19. Csom G, Reiss T, Fehér S, Czifrus S (2012) Thorium as an alternative fuel for SCWRs. Ann Nucl Energy 41:67-8 CrossRef
    20. Zheng JC, Feng HM, Lam MHW, Lam PKS, Ding YW, Yu HQ (2009) Removal of Cu (II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J Hazard Mater 171:780-85 CrossRef
    21. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by / Saccharomyces cerevisiae and / Pseudomonas aeruginosa. Appl Environ Microbiol 41:237-45
    22. Tsuruta T (2003) Accumulation of thorium ion using various microorganisms. J Gen Appl Microbiol 49:215-18 CrossRef
    23. Gadd G, White C (1989) Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33:592-97 CrossRef
    24. Tsezos M, Volesky B (1982) The mechanism of uranium biosorption by / Rhizopus arrhizus. Biotechnol Bioeng 24:385-01 CrossRef
    25. Bhainsa KC, D’Souza SF (2009) Thorium biosorption by / Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165:670-76 CrossRef
    26. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454-0462 CrossRef
    27. Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257-69 CrossRef
    28. Fan Q, Tan X, Li J, Wang X, Wu W, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776-782 CrossRef
    29. Rabung T, Pierret M, Bauer A, Geckeis H, Bradbury M, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim Cosmochim Acta 69:5393-402 CrossRef
    30. Sinitsyn V, Aja S, Kulik D, Wood S (2000) Acid–base surface chemistry and sorption of some lanthanides on K+ saturated marblehead illite: I. Results of an experimental investigation. Geochim Cosmochim Acta 64:185-94 CrossRef
    31. Kuwahara C, Fukumoto A, Nishina M, Sugiyama H, Anzai Y, Kato F (2011) Characteristics of cesium accumulation in the filamentous soil bacterium / Streptomyces sp. K202. J Environ Radioact 102:138-44 CrossRef
    32. Kazy SK, D’Souza S, Sar P (2009) Uranium and thorium sequestration by a / Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65-2 CrossRef
    33. Das SK, Bhowal J, Das AR, Guha AK (2006) Adsorption behavior of rhodamine B on / Rhizopus oryzae biomass. Langmuir 22:7265-272 CrossRef
    34. McKay G, Otterburn M, Sweeney A (1980) The removal of colour from effluent using various adsorbents—III. Silica: rate processes. Water Res 14:15-0 CrossRef
    35. Choudhary S, Sar P (2011) Uranium biomineralization by a metal resistant / Pseudomonas aeruginosa strain isolated from contaminated mine waste. J Hazard Mater 186:336-43 CrossRef
    36. Liu N, Liao J, Yang Y, Luo S, Luo Q, An Z, Duan Y, Liu M, Zhao P (2008) Biosorption of 241Am by / Saccharomyces cerevisiae: preliminary investigation on mechanism. J Radioanal Nucl Chem 275:173-80 CrossRef
    37. Gadd GM, White C (1989) Uptake and intracellular compartmentation of thorium in / Saccharomyces cerevisiae. Environ Pollut 61:187-97 CrossRef
  • 作者单位:Congcong Ding (1) (2)
    Su Feng (1)
    Wencai Cheng (1)
    Jie Zhang (1)
    Xiaolong Li (2)
    Jiali Liao (2)
    Yuanyou Yang (2)
    Zhu An (2)
    Shunzhong Luo (3)
    Jijun Yang (2)
    Jun Tang (2)
    Ning Liu (2)

    1. Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, People’s Republic of China
    2. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, People’s Republic of China
    3. Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, 621900, People’s Republic of China
  • ISSN:1588-2780
文摘
To understand the impact of microorganisms on the fate of thorium in soils, we have investigated the thorium biosorption behavior and mechanism on the living and dead cells of Streptomyces sporoverrucosus dwc-3, isolated from soils in China. The living cells need more time (24?h) to reach equilibrium than dead cells (24?h). The biosorption is greatly dependent on pH and ionic strength for the two kinds of cells. SEM and TEM indicate that thorium initially bind with the cell surface which is probably controlled by ion-exchange, evidence by PIXE, and inner-sphere complexation mechanism and then accumulated in the cytoplasm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700