Satellite characterization of terrestrial drought over Xinjiang Uygur Autonomous Region of China over past three decades
详细信息    查看全文
  • 作者:Yuhu Zhang ; Yunjun Yao ; Yi Lin ; Liu Xiang
  • 关键词:Drought monitoring ; Evapotranspiration ; Evaporative wet index ; Xinjiang Uygur Autonomous Region
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:6
  • 全文大小:2,556 KB
  • 参考文献:Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and drainage paper, pp 300
    Allen R, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J Irrig Drain Eng 133:380–394CrossRef
    Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing. J Geophys Res. doi:10.​1029/​2006JD007506
    Babamaaji Rakiya A, Lee Jejung (2014) Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environ Earth Sci 71:4309–4317CrossRef
    Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26CrossRef
    Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC (2008) The Vegetation Drought Response Index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. GIScience Remote Sens 45:16–46CrossRef
    Cai WY, ZhangYH Yao WJ et al (2015) Probabilistic analysis of drought spatiotemporal characteristics in the Beijing-Tianjin-Hebei metropolitan area in China. Atmosphere 6:431–450CrossRef
    Cao YP, Nan ZT, Cheng GD (2015) GRACE gravity satellite monitoring of drought characteristics in Xinjiang. J Arid Land Resour Environ 29:87–92 (in Chinese)
    Carlson TN, Gillies RR, Perry EM (1994) A method to make use thermal infrared temperature and NDVI management to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9:161–173CrossRef
    Chen W, Xiao Q, Sheng Y (1994) Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens Environ 9:106–112 (in Chinese)
    Chen X, Li BL, Li Q, Li JL, Abdulla S (2012) Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China. J Arid Land 4:105–112CrossRef
    Dai AG, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5(6):1117–1130CrossRef
    Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112:901–919CrossRef
    Friedl M, McIver D, Hodges J, Zhang X, Muchoney D, Strahler A et al (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302CrossRef
    Ghulam A, Li ZL, Qin QM, Tong QX (2007) Exploration of the spectral space based on vegetation index and albedo for surface drought estimation. J Appl Remote Sens. doi:10.​1117/​1.​2784792
    Hansen M, DeFries R, Townshend JRG, Sohlberg R (1998) UMD global land cover classification, 1 km, 1.0
    Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885CrossRef
    Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17:1133–1138CrossRef
    Jenkins J, Richardson A, Braswell B, Ollinger S, Hollinger D, Smith M (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric For Meteorol 143:64–79CrossRef
    Jiang H, Liu S, Sun P, An S, Zhou G, Li C, Wang J, Yu H, Tian X (2004) The influence of vegetation type on the hydrological process at the landscape scale. Can J Remote Sens 30:743–763CrossRef
    Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11:1405–1419CrossRef
    Kustas W, Daughtry C (1990) Estimation of the soil heat-flux net-radiation ratio from spectral data. Agric For Meteorol 49:205–223CrossRef
    Lambin EF, Ehrlich D (1996) The surface temperature vegetation index for land cover and land cover change analysis. Int J Remote Sens 17:463–487CrossRef
    Liang S, Wang K, Zhang X, Wild M (2010) Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J Select Topics Appl Earth Obs Remote Sens 3:225–240CrossRef
    Liu B, Ma ZG, Feng JM, Wei RQ (2008) The relationship between pan evaporation and actual evapotranspiration in Xinjiang since 1960. Acta Geographica Sinica 63:1131–1139
    Ma MW, Ren LL, Yuan F, Jiang SH, Liu Y, Kong H, Gong LY (2014) A new standardized Palmer drought index for hydro-meteorological use. Hydrol Process 28(23):5645–5661CrossRef
    McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: The 8th Conference on Applied Climatology, Am Met Soc, pp 179–184
    Monteith J (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–224
    Moran MS, Clarke TR, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index. Remote Sens Environ 49:246–263CrossRef
    Mu Q, Zhao M, Running S (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800CrossRef
    Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteor Soc 94:83–97CrossRef
    Palmer WC (1965) Meteorological drought. US Weather Bureau Research Paper 45
    Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation? Science 308:850–854CrossRef
    Priestley C, Taylor R (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92CrossRef
    Robeson SM (2008) Applied climatology: drought. Prog Phys Geogr 32(3):303–309
    Robock A, Luo L, Wood EF et al (2003) Evaluation of the North American land data assimilation system over the southern Great Plains during the warm season. J Geophys Res. doi:10.​1029/​2002JD003245
    Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature-vegetation index space for assessment of surface moisture status. Remote Sens Environ 79:213–224CrossRef
    Si JH, Feng Q, Zhang XY, Chang ZQ, Su YH, Xi HY (2007) Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. J Integrative Plant Biol 49(4):425–436. doi:10.​1111/​j.​1744-7909.​2007.​00388.​x CrossRef
    Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–100CrossRef
    Svoboda M, LeCompte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D Miskus D, Stephens S (2002) The drought monitor. Bull Amer Meteor Soc 1181–1190
    Tucker C (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRef
    Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498CrossRef
    Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Pruege JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300CrossRef
    Wang K, Dickinson R (2012a) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys. doi:10.​1029/​2011RG000373
    Wang K, Dickinson R (2012b) A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability. Rev Geophys. doi:10.​1029/​2011RG000373
    Wang P, Gong J, Li X (2001) Vegetation-Temperature Condition Index and its application for drought monitoring. Geomatics and Informationom Science of Wuhan University, pp 412–418 (in Chinese)
    Wang K, Dickinson R, Wild M, Liang S (2010) Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002. Part 1: Model development. J Geophys Res. doi:10.​1029/​2009JD013671
    Yao YJ, Liang SL, Qin QM, Wang KC (2010) Monitoring drought over the conterminous United States using MODIS and NCEP Reanalysis-2 Data. J Appl Meteorol Climatol 49(8):1665–1680CrossRef
    Yao Y, Liang S, Cheng J, Liu S, Fisher JB, Zhang X et al (2013) MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm. Agric For Meteorol 171–172:187–202CrossRef
    Yao Y, Liang S, Li X, Hong Y, Fisher JB, Zhang N et al (2014a) Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J Geophys Res 119:4521–4545CrossRef
    Yao Y, Zhao S, Zhang Y, Jia K, Liu M (2014b) Spatial and decadal variations in potential evapotranspiration of china based on reanalysis datasets during 1982–2010. Atmosphere 5:737–754CrossRef
    Yao Y, Liang S, Xie X, Cheng J, Jia K, Li Y, Liu R (2014c) Estimation of the terrestrial water budget over northern China by merging multiple datasets. J Hydrol 519:50–68CrossRef
    Yao Y, Liang S, Zhao S, Zhang Y, Qin Q, Cheng J, Jia K, Xie X, Zhang N, Liu M (2014d) Validation and application of the modified satellite-based Priestley-Taylor algorithm for mapping terrestrial evapotranspiration. Remote Sens 6:880–904CrossRef
    Yao Y, Liang S, Li X, Chen J, Wang K, Jia K, Cheng J, Jiang B, Fisher J, Mu Q, Grünwald T, Bernhofer C, Roupsard O (2015) A satellite-based hybrid algorithm to determine the Priestley-Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens Environ 165:216–233CrossRef
    Zhang K, Kimball JS, Mu Q, Jones L, Goetz S, Running S (2009) Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J Hydrol 379:92–110CrossRef
    Zhang Q, Singh VP, Li J et al (2012) Spatio-temporal variations of precipitation extremes in Xinjiang, China. J Hydrol 434–435:7–18CrossRef
    Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943CrossRef
    Zhao SH, Qin QM, Yang YH, Xiong YJ, Qiu GY (2009) Comparison of two split-window methods for retrieving land surface temperature from MODIS data. J Earth Syst Sci 118(4):345–353CrossRef
    Zhu Lin, Gong Huili, Dai Zhenxue et al (2015) An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas. Environ Earth Sci 74:5009–5021CrossRef
  • 作者单位:Yuhu Zhang (1)
    Yunjun Yao (2)
    Yi Lin (3)
    Liu Xiang (1)

    1. College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
    2. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, 100875, China
    3. Institute of Remote Sensing and GIS, Peking University, Beijing, 100871, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Satellite-based evapotranspiration (ET) estimation plays an important role in monitoring surface drought of the Xinjiang Uygur Autonomous Region of China (XUARC) because ET is a key indicator of drought severity. In this study, the evaporative wet index (EWI) is defined as the ratio of ET to potential ET (PET) based on a satellite-based hybrid Priestley-Taylor (Hybrid-PT) algorithm driven by the Advanced Very High Resolution Radiometer (AVHRR) Normalized difference vegetation index and the interpolated gridded meteorological data at a spatial resolution of 0.05°. The estimated ET is rigorously validated with eddy covariance (EC) observations. The validation result shows that the root-mean-square error (RMSE) is 0.75 mm and the square of the correlation coefficients (R 2) for the Fukang (FK) site is more than 0.5 for the comparison between the ground-measured and estimated daily ET at the Fukang (FK) site. We found a good correspondence between their spatiotemporal patterns of both EWI and precipitation (P) anomalies. We also found that widely significant decreasing trends in EWI, ET and P appears from 1982 to 2009 in central regions of XUARC. The EWI can effectively reflect the variation in surface moisture and it has provided a favorable tool for regional drought monitoring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700