Phosphoric acid-based preparing of chitin nanofibers and nanospheres
详细信息    查看全文
  • 作者:Tao Wu ; Guoqing Wang ; Chengxin Gao ; Zhigang Chen ; Li Feng ; Peng Wang…
  • 关键词:Chitin nanofibers ; Nanospheres ; Phosphoric acid ; Dissolution ; Regeneration ; Temperature
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:477-491
  • 全文大小:2,945 KB
  • 参考文献:Barber PS, Griggs CS, Bonner JR, Rogers RD (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15:601–607. doi:10.​1039/​c2gc36582k CrossRef
    Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580. doi:10.​1016/​s0032-3861(00)00713-8 CrossRef
    Chen R-H, Domard A, Muzzarelli RAA, Tokura S, Wang D-M (2011) Advances in chitin/chitosan science and their applications. Carbohydr Polym 84:695. doi:10.​1016/​j.​carbpol.​2010.​11.​049 CrossRef
    Chen X, Chew SL, Kerton FM, Yan N (2014) Direct conversion of chitin into a N-containing furan derivative. Green Chem 16:2204–2212. doi:10.​1039/​c3gc42436g CrossRef
    Chi S, Zivanovic S, Penfield MP (2006) Application of chitosan films enriched with oregano essential oil on bologna—active compounds and sensory attributes. Food Sci Technol Int 12:111–117. doi:10.​1177/​1082013206063845​ CrossRef
    Desai K, Kit K, Li J, Davidson PM, Zivanovic S, Meyer H (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer 50:3661–3669. doi:10.​1016/​j.​polymer.​2009.​05.​058 CrossRef
    Fan Y, Saito T, Isogai A (2008a) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198. doi:10.​1021/​bm700966g CrossRef
    Fan Y, Saito T, Isogai A (2008b) Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions. Biomacromolecules 9:1919–1923. doi:10.​1021/​bm800178b CrossRef
    Focher B, Beltrame PL, Naggi A, Torri G (1990) Alkaline N-deacetylation of chitin enhanced by flash treatments—reaction kinetics and structure modifications. Carbohydr Polym 12:405–418. doi:10.​1016/​0144-8617(90)90090-f CrossRef
    Goodrich JD, Winter WT (2007) α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement. Biomacromolecules 8:252–257. doi:10.​1021/​bm0603589 CrossRef
    Hsieh Y-L (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48:7837–7846. doi:10.​1007/​s10853-013-7512-5 CrossRef
    Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588. doi:10.​1021/​bm900163d CrossRef
    Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764. doi:10.​1016/​j.​carbpol.​2010.​04.​039 CrossRef
    Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW (2004) Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci A Polym Chem 42:3423–3432. doi:10.​1002/​pola.​20179 CrossRef
    Jia X, Chen Y, Shi C, Ye Y, Wang P, Zeng X, Wu T (2014) Preparation and characterization of cellulose regenerated from phosphoric acid. J Agric Food Chem 61:12405–12414. doi:10.​1021/​jf4042358 CrossRef
    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. doi:10.​1002/​anie.​201001273 CrossRef
    Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, Thoeming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs 8:1567–1636. doi:10.​3390/​md8051567 CrossRef
    Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.​1016/​j.​carbpol.​2010.​04.​073 CrossRef
    Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120:167–181. doi:10.​1016/​0022-2836(78)90063-3 CrossRef
    No HK, Cho YI, Kim HR, Meyers SP (2000) Effective deacetylation of chitin under conditions of 15 psi/121 °C. J Agric Food Chem 48:2625–2627. doi:10.​1021/​jf990842l CrossRef
    Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971. doi:10.​1039/​c003583a CrossRef
    Sikorski P, Hori R, Wada M (2009) Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10:1100–1105. doi:10.​1021/​bm801251e CrossRef
    Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromolecules 11:175–181. doi:10.​1021/​bm901046c CrossRef
    Tzoumaki MV, Moschakis T, Kiosseoglou V, Biliaderis CG (2011) Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll 25:1521–1529. doi:10.​1016/​j.​foodhyd.​2011.​02.​008 CrossRef
    Vincendon M (1997) Regenerated chitin from phosphoric acid solutions. Carbohydr Polym 32:233–237. doi:10.​1016/​s0144-8617(97)00005-2 CrossRef
    Wu T, Zivanovic S (2008) Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydr Polym 73:248–253. doi:10.​1016/​j.​carbpol.​2007.​11.​024 CrossRef
    Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan—value-added products from mushroom waste. J Agric Food Chem 52:7905–7910. doi:10.​1021/​jf0492565 CrossRef
    Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem 53:3888–3894. doi:10.​1021/​jf048202s CrossRef
    Yuan Y et al (2014) Chitin microfibers reinforce soy protein gels cross-linked by transglutaminase. J Agric Food Chem 62:4434–4442. doi:10.​1021/​jf500922n CrossRef
    Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2012) Chitin whiskers: an overview. Biomacromolecules 13:1–11. doi:10.​1021/​bm201564a CrossRef
    Zhang YHP, Cui JB, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648. doi:10.​1021/​bm050799c CrossRef
    Zhong C, Cooper A, Kapetanovic A, Fang Z, Zhang M, Rolandi M (2010) A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter 6:5298–5301. doi:10.​1039/​c0sm00450b CrossRef
    Zivanovic S, Chi S, Draughon AF (2005) Antimicrobial activity of chitosan films enriched with essential oils. J Food Sci 70:M45–M51CrossRef
  • 作者单位:Tao Wu (1)
    Guoqing Wang (1)
    Chengxin Gao (1)
    Zhigang Chen (1)
    Li Feng (2)
    Peng Wang (2)
    Xiaoxiong Zeng (2)
    Zhongwei Wu (3)

    1. Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People’s Republic of China
    2. College of Food Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People’s Republic of China
    3. College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Chitin nanofibers and nanospheres were prepared by dissolution of the polymer in phosphoric acid and regeneration in water. Up to 4 % chitin was readily soluble in concentrated phosphoric acid. By varying the dissolution temperatures and times, chitin nanofibers with widths around 20 nm or chitin nanospheres with sizes around 200–500 nm were obtained with yields more than 80 %. Chemical composition analysis showed that the chemical structures of native chitin were essentially remained after the dissolution and regeneration process, and the degree of substitution of phosphorous on chitin chain was less than 1.00 %. Crystalline structure analysis revealed the crystalline structure of native chitin was not altered, but the crystallinity was decreased after regeneration. Our findings offers a facile and green process for most common labs to prepare chitin nanomaterials with tuned morphology in high yields, which may find great applications in the biomedical, pharmaceutical and food industries. Keywords Chitin nanofibers Nanospheres Phosphoric acid Dissolution Regeneration Temperature

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700