Lignite-derived mesoporous N- and O-enriched carbon sheet: a low-cost promising electrode for high-performance electrochemical capacitors
详细信息    查看全文
  • 作者:Siqi Zhu ; Qiuli Chen ; Yaoyao Shi ; Zhiyi Chen…
  • 关键词:N ; and O ; enriched carbon sheet ; Hierarchical porosity ; Faradaic contribution ; Electrochemical capacitors
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:713-723
  • 全文大小:1,718 KB
  • 参考文献:1.Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763CrossRef
    2.Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W (2015) Chem Soc Rev 44:5181–5199CrossRef
    3.Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer).
    4.Li HQ, Luo JY, Zhou XF, Yu CZ, Xia YY (2007) J Electrochem Soc 154:A731–A376CrossRef
    5.Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRef
    6.Lee SW, Gallant BM, Byon HR, Hammond PT, Yang SH (2011) Energy Environ Sci 4:1972–1985CrossRef
    7.Guo BK, Sun XG, Veith GM, Bi ZH, Mahurin SM, Liao C, Bridges C, Paranthaman MP, Dai S (2013) Adv Energy Mater 3:708–712CrossRef
    8.Hou LR, Lian L, Li DK, Pang G, Li JF, Zhang XG, Xiong SL, Yuan CZ (2013) Carbon 64:141–149CrossRef
    9.Xu B, Hou S, Cao GP, Wu F, Yang YS (2012) J Mater Chem 22:19088–19093CrossRef
    10.Su FB, Poh CK, Chen JS, Xu GW, Wang D, Li Q, Lin JY, Lou XW (2011) Energy Environ Sci 4:717–724CrossRef
    11.Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mater 19:438–447CrossRef
    12.Béguin F, Szostak K, Lota G, Frackowiak E (2005) Adv Mater 17:2380–2384CrossRef
    13.Qian WJ, Sun FX, Xu YH, Qiu LH, Liu CH, Wang SD, Yan F (2014) Energy Environ Sci 7:379–386CrossRef
    14.Borchardt L, Oschatz M, Kaskel S (2014) Mater Horiz 1:157–168CrossRef
    15.Zhou HS, Li DL, Hibino M, Honma I (2005) Angew Chem Int Ed 117:807–812CrossRef
    16.Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994CrossRef
    17.Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) Adv Mater 22:347–351CrossRef
    18.Biswal M, Banerjee A, Deo M, Ogale S (2013) Energy Environ Sci 6:1249–1259CrossRef
    19.Huang WT, Zhang H, Huang YQ, Wang WK, Wei SC (2011) Carbon 49:838–843CrossRef
    20.Chen WX, Zhang H, Huang YQ, Wang WK (2010) J Mater Chem 20:4773–4775CrossRef
    21.Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ (2007) J Phys Chem C 11:7527–7531CrossRef
    22.He XJ, Ling PH, Yu MX, Wang XT, Zhang XY, Zheng MD (2013) Electrochim Acta 105:635–641CrossRef
    23.Zhou L, Cao H, Zhu SQ, Hou LR, Yuan CZ (2015) Green Chem 17:2373–2382CrossRef
    24.Guo Y, Shi ZQ, Chen MM, Wang CY (2014) J Power Sources 252:235–243CrossRef
    25.Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JMD, Lu GQ (2009) J Am Chem Soc 131:5026–5027CrossRef
    26.Ding M, Zhao YP, Zhu YY, Zong ZM, Wei XY, Fan X (2014) Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:2027–2032CrossRef
    27.Doskočil L, Grasset L, Válková D, Pekař M (2014) Fuel 134:406–413CrossRef
    28.Yuan CZ, Chen L, Gao B, Su LH, Zhang XG (2009) J Mater Chem 19:246–252CrossRef
    29.Marsh H, Reinoso FR (2006) Activated carbon. Elsevier, Amsterdam
    30.Raymundo-Piñero E, Azaïs P, Cacciaguerra D, Cazorla-Amorós D, Linares-Solano A, Béguin F (2006) Carbon 43:786–795CrossRef
    31.Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725CrossRef
    32.Świᾳtkowski A (1999) In studies in surface science and catalysis. Ed. Dᾳbrowski, Elsevier, Vol. 120, Part A, P. 69.
    33.Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanotechnology 23:015401CrossRef
    34.Caturla F, Molina-Sabio M, Rodríguez-Reinoso F (1991) Carbon 29:999–1007CrossRef
    35.Smisek M, Cerny S (1970) Active carbon: manufacture, properties and applications. Elsevier, Amsterdam
    36.Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang LJ, Zhang XG (2011) Nanoscale 3:529–545CrossRef
    37.Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK (2007) Carbon 45:785–796CrossRef
    38.Ma YW, Zhao J, Zhang LR, Zhao Y, Fan QL, Li XA (2011) Carbon 49:5292–5297CrossRef
    39.Wang ZH, Qie L, Yuan LX, Zhang WX, Hu XL, Huang YH (2013) Carbon 55:328–334CrossRef
    40.Li Z, Xu ZW, Wang HL, Ding J, Zahiri B, Holt CMB, Tan XH, Mitlin D (2014) Energy Environ Sci 7:1708–1718CrossRef
    41.Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836CrossRef
    42.Andreas HA, Conway BE (2006) Electrochim Acta 51:6510–6520CrossRef
    43.Zhang JB, Jin LJ, Cheng J, Hu HQ (2013) Carbon 55:221–232CrossRef
    44.Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd ed., John Wiley, Inc, New York; Ch. 6, P:233–235.
    45.Yuan CZ, Zhang LH, Hou LR, Lin JD, Pang G (2014) RSC Adv 4:24773–24776CrossRef
    46.Pang H, Zhang YZ, Lai WY, Hu Z, Huang W (2015) Nano Energy 15:303–312CrossRef
    47.Eliad L, Salitra G, Soffer A, Aurbach D (2001) J Phys Chem B 105:6880–6887CrossRef
    48.Ue M (1994) J Electrochem Soc 141:3336–3342CrossRef
    49.Paraknowitsch JP, Thomas A (2013) Energy Environ Sci 6:2839–2855CrossRef
    50.Li WR, Chen DH, Li Z, Shi YF, Wan Y, Huang JJ, Yang JJ, Zhao DY, Jiang ZY (2007) Electrochem Commun 9:569–573CrossRef
    51.Yuan CZ, Zhou L, Zhu SQ, Cao H, Hou LR (2015) J Electrochem Soc 162:A781–A786CrossRef
  • 作者单位:Siqi Zhu (1)
    Qiuli Chen (1)
    Yaoyao Shi (1)
    Zhiyi Chen (1)
    Ruiqi Bao (1)
    Lu Zhou (1)
    Linrui Hou (1)
    Kwun Nam Hui (2)
    Changzhou Yuan (1) (2)

    1. School of Materials Science & Engineering, Anhui University of Technology, Ma’anshan, 243002, Peoples Republic of China
    2. Institute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macau, Peoples Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
In the work, we successfully fabricate mesoporous N- and O-enriched carbon (NOC) with adjustable porosity and specific surface area (SSA) by using low-cost lignite as a precursor coupled with general KOH or ZnCl2 activation for electrochemical capacitors (ECs). Physicochemical and electrochemical characterizations reveal that chemical activating agents influence significantly upon the specific morphology, pore structure, and electrochemical performance of the resultant products. Strikingly, KOH-activated NOC (NOC-K) sheets are endowed with high SSA of ∼1257 m2 g−1, large pore volume of 1.3 cm3 g−1, and optimized pore size of ∼3 nm, rendering its electrochemical capacitance superior to those of NOC and ZnCl2-activated NOC (NOC-Z) in 6 M KOH. Thanks to its rich mesoporosity coupled with large electroactive SSA and heteroatom doping (N of ∼4.8 at.% and O of ∼23.3 at.%) effect, the NOC-K electrode yields even better electrochemical behaviors in 1 M H2SO4 than those in 6 M KOH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700