A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems
详细信息    查看全文
  • 作者:K. V. Zhukovsky
  • 关键词:inverse operator ; inverse derivative ; exponential operator ; differential equation ; Laguerre and Hermite polynomials ; special functions
  • 刊名:Moscow University Physics Bulletin
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:70
  • 期:2
  • 页码:93-100
  • 全文大小:195 KB
  • 参考文献:1.V. V. Mikhailin, Phys.-Usp. 56, 412 (2013). doi 10.3367/UFNe.0183.201304i.0433ADS View Article
    2.G. N. Kulipanov, Phys.-Usp. 50, 368 (2007). doi 10.1070/PU2007v050n04ABEH006237.ADS View Article
    3.E. N. Ragozin and I. I. Sobelman, Phys.-Usp. 47, 195 (2004). doi 10.1070/PU2004v047n02ABEH001755.ADS View Article
    4.P. J. Duke, Synchrotron Radiation Production and Properties (New York, 2000).
    5.G. Margaritondo and P. R. Ribic, J. Synchrotron Radiat. 18, 101 (2011).View Article
    6.J. Feldhaus and B. Sonntag, in Strong Field Laser Physics, Ed. by T. Brabec (Springer, 2009), p. 91.
    7.K. V. Zhukovsky and V. V. Mikhailin, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 2, 41 (2005). http://鈥媣mu.鈥媝hys.鈥媘su.鈥媟u/鈥媋bstract/鈥?005/鈥?/鈥?5-2-41
    8.G. Dattoli, V. Mikhailin, P.-L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).ADS View Article
    9.K. V. Zhukovsky, Undulator Radiation in Multiple Magnetic Fields. Synchrotron: Design, Properties and Applications (Nova Science, New York, 2012).
    10.K. V. Zhukovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 422 (2014).View Article
    11.K. V. Zhukovsky, Prog. Electromag. Res. B 59, 245 (2014).View Article
    12.K. V. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015). doi 10.1080/09205071.2014.985854.
    13.A. Appel and J. K. de F茅riet, Functions Hyperg茅om茅triques et Hypersph茅riques; Polynomes d鈥橦ermite (Gauthier-Villars, Paris, 1926).
    14.G. Dattoli, J. Comput. Appl. Math. 118, 111 (2000).MathSciNet ADS View Article
    15.G. Dattoli, H. M. Srivastava, and K. Zhukovsky, J. Comput. Appl. Math. 182, 165 (2005).MathSciNet ADS View Article MATH
    16.D. T. Haimo and C. Markett, J. Math. Anal. Appl. 168, 89 (1992).MathSciNet View Article
    17.D. T. Haimo and C. Markett, J. Math. Anal. Appl. 168, 89 (1992).MathSciNet View Article MATH
    18.K. V. Zhukovsky and D. Dattoli, Phys. At. Nucl. 71, 1807 (2008). doi 10.1134/S1063778808100153.View Article
    19.G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 50, 817 (2007).ADS View Article
    20.G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 55, 547 (2008).ADS View Article
    21.G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 52, 591 (2007).ADS View Article
    22.K. V. Zhukovskij, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 3, 49 (2001). http://鈥媣mu.鈥媝hys.鈥媘su.鈥媟u/鈥媋bstract/鈥?001/鈥?/鈥?1-3-49 ADS
    23.K. V. Zhukovsky, AIChE J. 49, 3029 (2003).View Article
    24.K. Zhukovsky, AIChE J. 52, 2356 (2006).View Article
    25.K. V. Zhukovskij and V. Ch. Zhukovskij, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 5, 23 (2002).
    26.K. Zhukovsky and A. Pozio, J. Power Sources 130, 95 (2004).ADS View Article
    27.A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.
    28.A. A. Kilbas and H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).MATH
    29.K. Zhukovsky, Sci. World J. 2014, 454865 (2014). doi 10.1155/2014/454865.View Article
    30.G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, Integral Transform. Spec. Funct. 17(1), 31 (2006).MathSciNet View Article
    31.G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, Appl. Math. Comput. 184, 979 (2007).MathSciNet View Article MATH
    32.I. M. Gelfand and G. E. Shalov, Generalized Functions and Actions with Them (Moscow, 1959) [in Russian].
    33.H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions (Wiley, New York, 1984).MATH
    34.G. Dattoli, Lectures on Free Electron Lasers (Berlin, 1993).View Article
    35.W. B. Colson, L. C. Gallardo, and P. M. Bosco, Phys. Rev. A 34, 4875 (1986).ADS View Article
    36.G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Moscow Univ. Phys. Bull. 64, 507 (2009). doi 0.3103/S0027134909050087. http://鈥媣mu.鈥媝hys.鈥媘su.鈥媟u/鈥媋bstract/鈥?009/鈥?/鈥?9-5-033 View Article
    37.K. Zhukovsky, J. Electromagn. Wave Appl. 28, 1869 (2014). doi 10.1080/09205071.2014.945664.View Article
    38.K. V. Zhukovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1068 (2014).View Article
    39.G. Dattoli, V. V. Mikhailin, and K. Zhukovsky, J. Appl. Phys. 104, 124507 (2008).ADS View Article
    40.K. B. Wolf, Integral Transforms in Science and Engineering (New York, 1979).View Article MATH
    41.H. W. Gould and A. T. Hopper, Duke Math. J. 29, 51 (1962).MathSciNet View Article MATH
    42.J. E. Avron and I. W. Herbst, Commun. Math. Phys. 52, 239 (1977).MathSciNet ADS View Article
    43.O. Vallee and M. Soares, Airy Functions and Application to Physics (London, 2004).View Article
    44.K. V. Zhukovsky and G. Dattoli, Appl. Math. Comput. 217, 7966 (2011).MathSciNet View Article
    45.M. V. Berry and N. J. Balazs, Am. J. Phys. 47, 264 (1979).ADS View Article
  • 作者单位:K. V. Zhukovsky (1)

    1. Department of Physics, Moscow State University, Moscow, 119991, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-8460
文摘
A general operational method, which is based on the developed technique of the inverse derivative operator, for solving a wide range of problems described by some classes of differential equations is represented. The inverse derivative operators for solving a number of differential equations are constructed and used. The operational identities are derived with the use of the inverse derivative operator, integral transformations, and generalized forms of orthogonal polynomials and special functions. Examples of solving various partial differential equations, such as equations of heat conduction and diffusion, as well as the Fokker-Planck equation, etc. are given. The application of the operational approach to solving a number of physical problems, among them problems related to the motion of charged particles in external field, is demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700