Investigation of Structural and Magnetic Effects of Cobalt Doping in ZnFe2O4 Nanoparticles
详细信息    查看全文
  • 作者:E. Mehran ; Saber Farjami Shayesteh…
  • 关键词:Mixed ferrite ; Spinel ; Magnetic nanoparticle ; Superparamagnetic
  • 刊名:Journal of Superconductivity Incorporating Novel Magnetism
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:29
  • 期:5
  • 页码:1241-1247
  • 全文大小:1,797 KB
  • 参考文献:1.Raj, K., Moskowitz, B., Casciari, R.: Advances in ferrofluid technology. J. Magn. Magn. Mater. 149, 174–180 (1995)ADS CrossRef
    2.Hafeli, U., Schutt, W., Teller, J., Zborowski, M.: Scientific and clinical applications of magnetic carriers. Plenum Press, New York (1997)CrossRef
    3.Hork, D., Rittich, B., Spanov, A., Hora, k., Spanova, D.A.: Carboxyl-functionalized magnetic micro particle carrier for isolation and identification of DNA in dairy products. J. Magn. Magn. Mater. 311, 249–254 (2007)ADS CrossRef
    4.Sooseok, Ch., Lorico, D.S., Lapitan, Jr., Yingying, Ch., Takayuki, W.: Synthesis of cobalt boride nanoparticles using RF thermal plasma. Adv. Powder Technol. 25, 365–371 (2014)CrossRef
    5.Prodelalova, J., Rittich, B., Spanova, A., Petrova, K., Benes, M.J.: Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J. Chromatogr. A 1056, 43–48 (2004)CrossRef
    6.Zhang, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)ADS CrossRef
    7.Zhou, Y.T., Nie, H.L., Branford-White, C., He, Z.Y., Zhu, L.M.: Removal of Cu 2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J. Colloid Interface Sci. 330, 29–37 (2009)CrossRef
    8.Yantasee, W., Warner, C.L., Sangvanich, T., Addleman, R.S., Carter, T.G., Wiacek, R.J., Fryxell, G.E., Timchalk, C., Warner, M.G.: Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Tech. 41, 5114–5119 (2007)CrossRef
    9.Amirabadizadeh, A., Farsi, H., Dehghani, M., Arabi, H.: Effect of substitutions of Zn for Mn on size and magnetic properties of Mn–Zn ferrite nanoparticles. J .Supercond. Nov. Magn. 25, 2763–2765 (2012)CrossRef
    10.Shokrollahi, H., Janghorban, K.: Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater. Sci. Engine. B 141, 91–107 (2007)CrossRef
    11.Shokrollahi, H.: Magnetic properties and densification of Manganese–zinc soft ferrites (Mn\(_{1\_{\mathrm {x}}}\) ZnxFe2O4) doped with low melting point oxides. J. Magn. Magn. Mater 320, 463–474 (2008)ADS CrossRef
    12.Khorrami, Gh.H., Khorsand Zak, A., Banihashemian, S.M.: Magnetic and dielectric properties on sol–gel combustion synthesis of Pb (Zr0.52, Ti0.43X0.05) O3 (X = Fe, Ni, and Co) nanoparticles. Adv. Powder. Technol. 25, 1319–1324 (2014)CrossRef
    13.Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005)ADS CrossRef
    14.Geng, B.Y., Ma, J.Z., Liu, X.W., Du, Q.B., Kong, M.G., Zhang, L.D.: Hydrophilic polymer assisted synthesis of room-temperature ferromagnetic Fe3O4 nonsense. Appl. Phys. Lett, 90, 043120–3 (2007)ADS CrossRef
    15.Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)ADS CrossRef
    16.Jiles, D.C., Lo, C.C.H.: The role of new materials in the development of magnetic sensors and actuators. Sensors Actuators A 106, 3–7 (2003)CrossRef
    17.Somaiah, N., Jayaraman, T.V., Joy, P.A., Das, D.: Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites CoFe2−xZnxO4 (x = 0, 0.1, 0.2, and 0. 3). J. Magn. Magn. Mater. 324, 2286–2291 (2012)ADS CrossRef
    18.Tsay, C.Y., Lin, Y.H., Jen, S.U.: Magnetostrictive and AC impedance properties of manganese substituted cobalt ferrites. Ceram. Int. 41, 5531–5536 (2015)CrossRef
    19.Malaescu, I., Stefua, N., Gabor, L.: Relaxation process and ferromagnetic resonance investigation of ferrofluids with Mn–Zn and Mn–Fe mixed ferrite particles. J. Magn. Magn. Mater. 234, 299–305 (2001)ADS CrossRef
    20.Yao, C., Zeng, Q., Goya, G.F., Torres, T., Liu, J., Wu, H., Ge, M., Zeng, Y., Wang, Y., Jiang, J.Z.: ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007)CrossRef
    21.Ozcan, S., Kaynar, B., Can, M.M., Frat, T.: Synthesis of ZnFe2O4 from metallic zinc and iron by wet-milling process. Mater. Sci. Eng. B 121, 278–281 (2005)CrossRef
    22.Reddy, M.P., Madhuri, W., Reddy, N., Siva Kumar, K.V., Murthy, V.R.K., Ramakrishna Reddy, R.: Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C 30, 1094–1099 (2010)CrossRef
    23.He, H.Y., Yan, Y., Huang, J.F., Lu, J.: Rapid photodegradation of methyl blue on magnetic Zn\(_{1\_{\mathrm {x}}}\) CoxFe2O4 nanoparticles synthesized by hydrothermal process. Sep. Purif. Technol. 136, 36–41 (2014)CrossRef
    24.Sharma, A., Parmar, K., Kotnala, R.K., Negi, N.S.: Magnetic and dielectric properties of CoxZn1−x Fe2O4 synthesized by metallo-organic decomposition technique. Int. J. Adv. Engg. Tech 5, 544–554 (2012)
    25.Carbonin, S., Martignago, F., Menegazzo, G., Negro, A.: X-ray single-crystal study of spinels in situ heating. Phys. Chem. Miner. 29, 503–514 (2002)ADS CrossRef
    26.Cullity, B.: Elements of X-ray Diffraction. Addison-Wesley, Boston (1978)MATH
    27.Sepelak, V., Wilde, L., Steinike, U., Becker, K.D.: Thermal stability of the nonequilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite. Mater. Sci. Eng.: A 865-868, 375–377 (2004)
    28.Steinike, U., Tkáčová, K.: Mechanochemistry of solids—real structure and reactivity. J. Mater. Synth. Process. 3–4, 197–203 (2000)CrossRef
    29.Zhuiykov, S., Ono, T., Yamazoe, N., Miura, N.: High-temperature NOx sensors using Zirconia solid electrolyte and zinc-family oxide sensing electrode. Solid State Ion. 152, 801–807 (2002)CrossRef
    30.Manikandan, A., Vijaya, J.J., Mary, J.A., Kennedy, L.J., Dinesh, A.: Optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. J. Ind. Eng. Chem. 20, 2077–2085 (2014)CrossRef
    31.Jovanovic, S., Spreitzer, M., Tramssek, M., Trontelj, Z., Suvorov, D.: Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J. Phys. Chem. C 118, 13844–13856 (2014)CrossRef
    32.Li, F., Wang, H., Wang, L., Wang, J.: Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method. J. Magn. Magn. Mater. 309, 295–299 (2007)ADS CrossRef
  • 作者单位:E. Mehran (1)
    Saber Farjami Shayesteh (1)
    F. Nasehnia (2)

    1. Nanostructures Lab, Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
    2. Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Superconductivity, Superfluidity and Quantum Fluids
    Magnetism and Magnetic Materials
    Condensed Matter
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1557-1947
文摘
We study structural and magnetic properties of magnetic ceramic Co x Zn1−x Fe2O4 nanoparticles synthesized by the co-precipitation method and optimize its size and magnetic property for possible application in wastewater treatment. The effects of long stirring time under boiling condition and the introduction of the third metal ion to the structure are investigated. To study the microstructural and magnetic characteristic of the samples, X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) analyses are carried out. The diffracted peaks of XRD pattern confirm the formation of spinel phase. In addition, we study the effect of Co doping on the peak positions in the spinel structures. To evaluate crystallite size and other lattice parameters of the samples, we use the Rietveld method as a nearly exact approximation instead of Scherrer formula. Thus, the Rietveld refinement method has been utilized and structural and lattice parameters of the samples are extracted using Reflex program. In contrast with other works, our nanoparticles show superparamagnetic behavior, larger surface area, and better crystallinity with no calcination which originates from the condition of the synthesis method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700