Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1
详细信息   在线全文   PDF全文下载
摘要

More than 60% of the Earth's land and shallow marine areas are covered by > 2 km of sediments and sedimentary rocks, with the thickest accumulations on rifted continental margins (Figure 1). Free-air marine gravity anomalies derived from Geosat and ERS-1 satellite altimetry (Fairhead et al., 2001; Sandwell and Smith, 2009; Andersen et al., 2009) outline most of these major basins with remarkable precision. Moreover, gravity and bathymetry data derived from altimetry are used to identify current and paleo-submarine canyons, faults, and local recent uplifts. These geomorphic features provide clues to where to look for large deposits of sediments. While current altimeter data delineate large offshore basins and major structures, they do not resolve some of the smaller geomorphic features and basins (Yale et al., 1998; Fairhead et al., 2001). Improved accuracy and resolution is desirable: to facilitate comparisons between continental margins; as an exploration tool and to permit extrapolation of known structures from well-surveyed areas; to follow fracture zones out of the deep-ocean basin into antecedent continental structures, to define and compare segmentation of margins along strike and identify the position of the continent-ocean boundary; and to study mass anomalies (e.g., sediment type and distribution) and isostatic compensation at continental margins. In this article, we assess the accuracy of a new global marine gravity model based on a wealth of new radar altimetry data and demonstrate that these gravity data are superior in quality to the majority of publicly available academic and government ship gravity data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700