A TEST FOR THE POSSIBILITY OF PHOTOSYMBIOSIS IN EXTINCT FUSULINE FORAMINIFERA: SIZE AND SHAPE RELATED TO DEPTH OF HABITAT
详细信息   在线全文   PDF全文下载
  • journal_title:PALAIOS
  • Contributor:JOHN R. GROVES ; MADISON PIKE ; KASEY WESTLEY
  • Publisher:SEPM Society for Sedimentary Geology
  • Date:2012-10-01
  • Format:text/html
  • Language:en
  • Identifier:10.2110/palo.2012.p12-057r
  • journal_abbrev:PALAIOS
  • issn:0883-1351
  • volume:27
  • issue:10
  • firstpage:738
  • section:Research Articles
摘要

Late Paleozoic fusuline foraminifera are thought to have hosted photosymbionts, as do modern larger foraminifera, but the ancient host-symbiont relationship has never been demonstrated conclusively. Among modern larger foraminifera, deeper-dwelling species exhibit large surface-to-volume ratios in order to maximize the amount of sunlight that can be captured for use by photosymbionts. Shallower-dwelling species exhibit smaller surface-to-volume ratios in order to limit incoming sunlight, especially ultraviolet radiation. If modern symbiont-bearing foraminifera are appropriate analogues for fusulines, then deeper-dwelling fusulines ought to exhibit larger surface-to-volume ratios than shallower-dwelling ones. This prediction was tested by analyzing fusuline shells from the Virgilian (Upper Pennsylvanian) Oread, Lecompton and Deer Creek cyclothems in Kansas. Specimens from deeper-water “middle” limestones exhibit significantly larger surface-to-volume ratios than those from regressive “upper” limestones, and specimens with the smallest surface-to-volume ratios occur in shoaling deposits at or near the tops of regressive limestones. Shell shape does not vary predictably with depth of habitat. Rather, changes in surface-to-volume ratio were accomplished mainly by changes in size, with larger shells always characterized by smaller ratios. The observed trend is significantly nonrandom with respect to depth of habitat (p  =  0.012). The trend is not likely the result of hydrodynamic adaptation, postmortem size sorting or size decrease along a bottom oxygen gradient. It most likely reflects geometric optimization for photosymbiosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700