Characteristics and implications of ca. 1.4 Ga deformation acros
详细信息   在线全文   PDF全文下载
摘要

In the Wet Mountains, Colorado, Proterozoic rocks exposed along an oblique north-south tilted section preserve evidence of regional deformation and high temperature metamorphism in the middle and lower crust at ca. 1435–1365 Ma. Deformation of gneisses in the northern Wet Mountains is partitioned within discrete zones of subvertical foliation and northeast-trending folds, a product of northwest-southeast contraction or constriction associated with transcurrent deformation. Gneisses in the north are generally not migmatitic, and granitic intrusions form discrete bodies with distinct contacts. Shear zone foliation is cut by a late syntectonic dike with a U-Pb zircon age of 1430+5/–3 Ma, constraining the age of shear zone deformation in the upper crust. In the central to southern Wet Mountains, gneisses exhibit migmatitic foliation that dips moderately northeast, with dip- to oblique-slip mineral lineation throughout. Granite forms pervasive sills and interconnected sheets with gradational or indistinct contacts. Gneissic granite that yields a U-Pb zircon age of 1435 ± 4 Ma was emplaced into amphibolite gneiss containing 1436 ± 2 Ma metamorphic zircon. Younger, foliated granite sills were emplaced at 1390 ± 10 Ma. Our new results indicate contemporaneous deformation and metamorphism throughout the middle and lower crust at ca. 1.4 Ga. We interpret the zone of migmatitic crust pervaded by granite to represent a weak, low-viscosity, flowing lower crust that controlled the pattern of distributed deformation in the comparatively strong, brittle crust above. Thus, the Wet Mountains may be viewed as a deeply exhumed analog for the mid-crustal, low-viscosity layers that are inferred to exist in modern intracontinental orogenic settings and continental rift provinces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700