Fast ion conduction character and ionic phase-transition in si
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Luca Bindi ; Silvio Menchetti
  • Publisher:Mineralogical Society of America
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2011.3736
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:96
  • issue:5-6
  • firstpage:792
  • section:Articles
摘要

The mineral fettelite, [Ag6As2S7][Ag10HgAs2S8], has been recently structurally characterized. On the whole, the structure can be described as a regular succession of two module layers stacked along the c-axis: a first module layer (labeled A) with composition [Ag6As2S7]2− and a second module layer (labeled B) with composition [Ag10HgAs2S8]2+. Here we report an integrated high-temperature single-crystal X-ray diffraction (HT-SCXRD), differential scanning calorimetry (DSC), and complex impedance spectroscopy (CIS) study on a sample of fettelite from Chañarcillo, Copiapó Province, Chile. DSC and conductivity measurements pointed out that fettelite shows a ionic-transition at about 380 K. HT-SCXRD experiments confirmed the phase transition toward a disordered phase having a trigonal symmetry with the a and b unit-cell parameters halved. In the HT-structure, the disorder is located in the B layer where the Ag-Hg cations are found in various sites corresponding to the most pronounced probability density function locations of diffusion-like paths. This indicates that at least two polytypes could exist for fettelite, the ordered, monoclinic RT-structure (space group C2), and a fast ion conducting, trigonal, disordered HT-form (space group Pm1) with a and b parameters halved. The two unit-cell types (corresponding to two different polytypes) could be also found in nature. Slightly different chemical compositions for different fettelite samples (e.g., different Ag/Hg ratios) could play a crucial role as driving forces for different unit-cell stabilizations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700