Rapid, high-temperature formation of large-scale rheomorphic
详细信息   在线全文   PDF全文下载
摘要

In the Teton River Canyon, eastern Idaho, the ca. 2.06 Ma, 130-m-thick Huckleberry Ridge Tuff exhibits large-scale rheomorphic fold geometries defined by eutaxitic fabrics parallel to both the primary internal zonation and the basal contact with older strata. Paleomagnetic data from a large-amplitude (>150 m), northwest-trending, overturned fold near the failed Teton Dam indicate folding above maximum magnetization unblocking temperatures (>580 °C). The in situ characteristic remanent magnetization (ChRM) direction is indistinguishable from previous studies of undeformed Huckleberry Ridge Tuff, and a fold test is negative (k minimized at 100% unfolding). Anisotropy of magnetic susceptibility data reveal magnetic foliation planes that dip northeast, roughly parallel to the axial surface of the fold. Because deformed and undeformed Huckleberry Ridge Tuff exposures preserve the same anomalous ChRM direction, large-scale rheomorphic structures in the tuff must have formed rapidly at high temperatures shortly after development of compaction fabrics. Post-welding, high-temperature deformation is consistent with field evidence indicating rapid, plastic secondary deformation of much of the tuff prior to devitrification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700