A spatially constrained 1D inversion algorithm for quasi-3D conductivit
详细信息   在线全文   PDF全文下载
摘要

The efficient use of water in irrigated agricultural systems is of increasing importance given the changes in climatic patterns currently being experienced in the irrigated areas of the Murray-Darling Basin (MDB) in Australia. In previous research, electromagnetic (EM) induction instruments have been used to map the distribution of the clay content in those areas. However, describing their vertical extent and connectivity with groundwater tables or stratigraphic features such as paleochannels has not been studied adequately. One of the reasons for the paucity of research is the lack of suitable instrumentation or software to invert apparent conductivity (σa) data. The aim of this research is to demonstrate how DUALEM-421 equipment, which operates using electromagnetic induction theory, can be used to map not only the areal distribution of a prior stream channel but its vertical extent by inputting the data into a 1D spatially constrained algorithm for quasi-3D conductivity imaging. We discovered how the inversion of the apparent electrical conductivity, measured in the horizontal (HCP) and perpendicular (PRP) arrays, characterizes the Quaternary alluvial clays which dominate the riverine plain of the lower Gwydir valley, and indicates the location and extent of a prior stream channel and its sediments across Auscott Midkin field 11. We found the calculated conductivity values favorably represent the known stratigraphy of these physiographic units. Our results suggest the prior stream channel may be interconnected with a more extensive paleochannel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700