Coupling ground penetrating radar and fluid flo
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Mattia Miorali ; Feng Zhou ; Evert Slob ; Rob Arts
  • Publisher:Society of Exploration Geophysicists
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.3569580
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:76
  • issue:3
  • firstpage:A21
  • section:Geophysics Letters
摘要

The recent introduction of smart well technology allows for new geophysical monitoring opportunities. Smart wells, which allow zonal production control, combined with monitoring techniques capable of capturing the arrival of undesired fluids, have the potential to significantly increase the oil recovery. We consider borehole radar as a valuable technology for monitoring of the near-well region. By coupling a drainage process of a bottom water-drive reservoir with electromagnetic simulations, we find that radar sensors located in the production well can successfully map the fluid saturation evolution. In low-conductivity reservoirs (σ<0.02 S/m), a system performance above 80 dB is necessary to record reflections in the range of 10 m. Higher conductivity values strongly reduce the radar investigation depth. Despite the technical challenges to implement a permanent down-hole radar system, the potential semi-continuous acquisition would make 4D ground-penetrating radar a promising technology in capturing the near-well fluid dynamics. Suitable environments are bottom water-drive reservoirs with thin oil layer and heavy oil reservoirs exploited by steam-assisted gravity drainage processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700