Estimating Brown-Korringa constants for fluid substitution in multimineralic rocks
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Gary Mavko ; Tapan Mukerji
  • Publisher:Society of Exploration Geophysicists
  • Date:2013-05-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2012-0056.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:78
  • issue:3
  • firstpage:L27
  • section:Poroelasticity
摘要

Brown and Korringa extended Gassmann’s equations for fluid substitution in rocks to allow for arbitrarily mixed mineralogy. This extension was accomplished by adding just one additional constant—replacing the mineral bulk modulus with two less intuitive constants. Even though virtually all rocks have mixed mineralogy, the Brown and Korringa equations are seldom used because values for the constants are unknown. We estimate plausible values for the Brown-Korringa constants, based on effective medium models. The self-consistent formulation is used to describe a rock whose mineral and pore phases are randomly distributed ellipsoids—a plausible representation of randomly mixed mineral grains, as with dispersed clay in sandstone. Using the self-consistent model, the two constants are predicted to be nearly identical, justifying the use of an average mineral modulus in Gassmann’s equations. For small contrasts in mineral stiffness, the Brown-Korringa constants are approximately equal to the Voigt-Reuss-Hill average of the individual mineral bulk moduli. In a second approach, a multilayered spherical shell model is used to describe a rock where a particular solid phase preferentially coats grains or lines pores. In this case, the constants can differ substantially from each other, demonstrating the need for the Brown-Korringa equation. A third model represents weak pore-lining or pore-filling clay within an arbitrary pore geometry. The clay-fluid mix can be replaced exactly with an average fluid or “mud.” When the nonclay minerals have similar moduli, then the replacement of the clay-fluid mix causes the Brown-Korringa equation to revert to Gassmann’s equation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700