Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Dengliang Gao
  • Publisher:Society of Exploration Geophysicists
  • Date:2013-03-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2012-0190.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:78
  • issue:2
  • firstpage:O21
  • section:Seismic Attributes and Pattern Recognition
摘要

In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome formed by tectonic folding and faulting, curvature helps define the crestal portion of reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In fractured reservoirs at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to evaluate fracture volume and connectivity, and to model fracture networks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700